

TRAPS: Tunable Rapid-uptake AminoPolymer Aerogel Sorbent for direct air capture of CO₂

DE-FE0031951

Mahati Chintapalli

PARC, a Xerox Company

U.S. Department of Energy

National Energy Technology Laboratory

Carbon Management and Natural Gas & Oil Research Project Review Meeting
Virtual Meetings August 2 through August 31, 2021

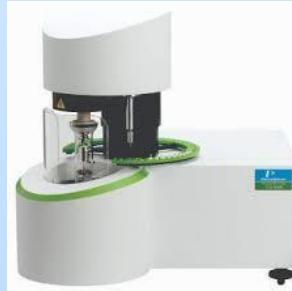
Project Overview

- Funding: \$0.8M DOE & \$0.2M Cost Share
- Period of performance: 18 months (Feb 2021 – Aug 2022)
- Team:

- Objectives:
 - Synthesize sorbent with high equilibrium capacity (4 mmol/g), rapid uptake rate ($0.15 \text{ mmol g}^{-1} \text{ min}^{-1}$), and long oxidative stability
 - Characterize sorbent in a fixed bed reactor at $>25 \text{ g}$ scale
 - Model performance and cost of a DAC process with the sorbent

Team and Facilities

PARC Team


Dr. Jonathan Bachman
Dr. Mahati Chintapalli (PI)
Dr. Gabriel Iftime
Dr. Stephen Meckler
Kay Xia

Preliminary characterization @ PARC

Pore characteristics

Sorption

Livermore Team

Dr. Nathan Ellebracht (Team Lead)
Dr. Wenqin Li
Dr. Simon Pang

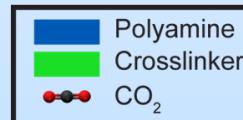
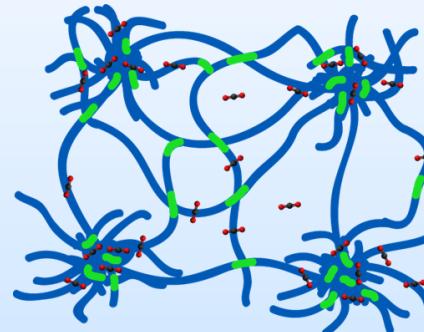
Fixed bed characterization @ LLNL

Gemini: custom fixed bed sorbent testing instrument

Technology Background

Temperature swing sorbent based on PARC's porous polymer synthesis platform

PARC aerogels:



- Moderate porosity
- Ambient dried/scalable
- High surface area
- Thin pore walls
- Tunable chemistry
- Variety of formfactors

Non-sorbent aerogels

Develop
Sorbent

Key Innovation: Polyamine aerogel

Anticipated Benefits

High capacity: $4 \text{ mol CO}_2 \text{ kg}^{-1}$
High amine content
Thin pore walls, 10s nm

Fast kinetics: $0.15 \text{ mol CO}_2 \text{ kg}^{-1} \text{ min}^{-1}$
Mesoporous (10s nm scale)
Specific surface area: $100-1000 \text{ m}^2/\text{g}$

Degradation resistance
Material structure

Low sensible heat load
Low inactive mass

Challenges:

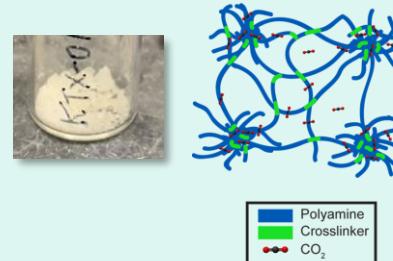
- Adapting synthesis to incorporate amine
- Maximizing amine content without sacrificing pore structure
- Achieving long cycle life is a challenge for solid sorbents, in general

Technology Background

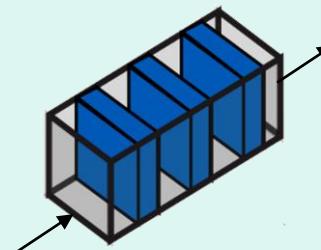
Envisioned operation:

Adsorption at ambient conditions

Desorption at $< 110^{\circ}\text{C}$ (conditions to be explored)


Prior work:

High surface area
polymer aerogels
in other materials


This project

Develop a high
capacity CO_2
sorbent and
demonstrate
performance

Future development

Sorbent integrated
into a contactor
design

Technical Approach/Project Scope

PARC led

Aerogel formulation development

Maximize incorporation of amine monomer

Lab scale characterization

Show feasibility of meeting target properties

Scale-up and physical properties

- (1) Produce sorbent for fixed bed testing
- (2) Measure attrition/crush strength

LLNL led

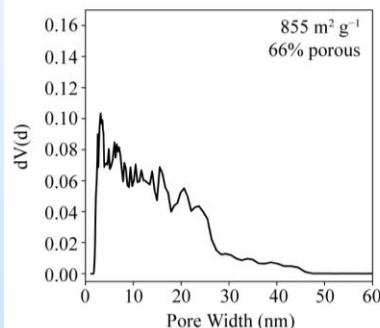
Fixed bed sorbent testing

Demonstrate Target properties

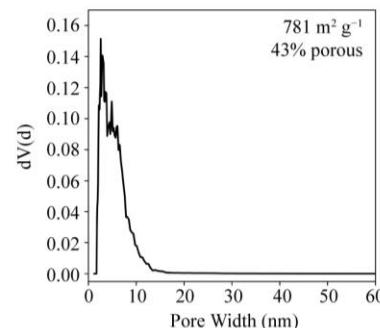
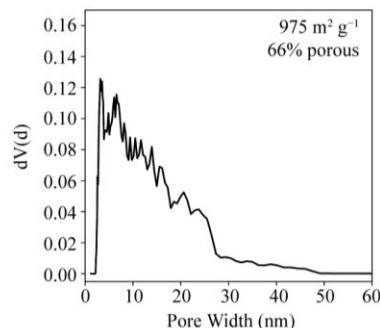
Conceptual process design

Develop projections of cost and energy efficiency

Success Criteria:

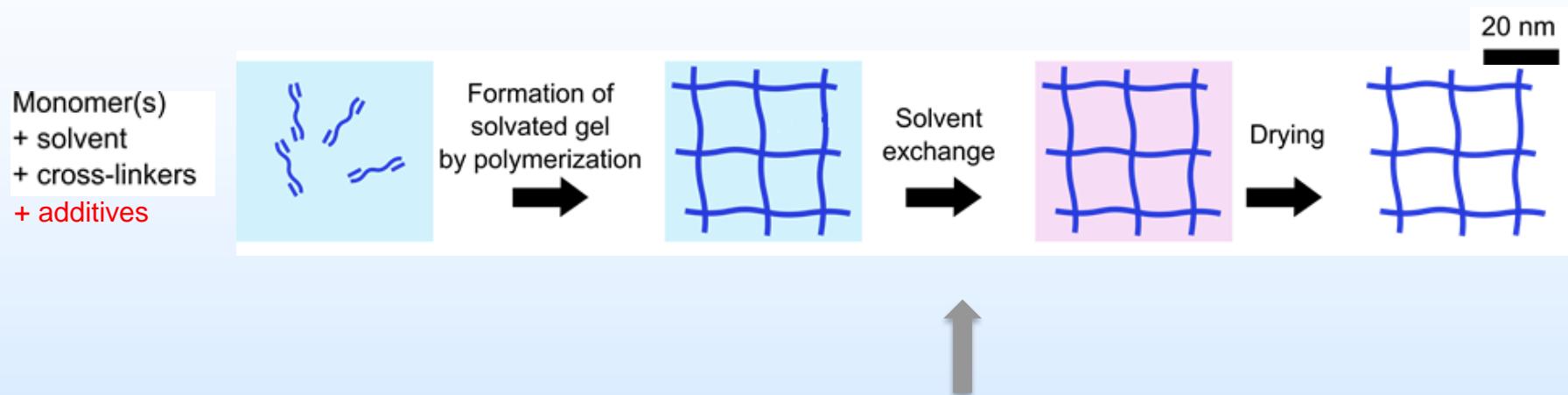

- Measure sorbent and physical properties in State Point Table
- Achieve CO_2 adsorption up to 4 mmol/g at 0.15 mmol/g/min and desorption down to 0.4 mmol/g at 0.3 mmol/g/min, at 400 ppm in air
- Conceptual process design and cost and performance projections to enable next stage development: integrated prototype and field testing

Current Status



Technology status prior to project

Non-sorbent,
ambient-dried
materials

Conventional method



PARC synthesis method

- Pore size and porosity control through proprietary synthesis conditions
- Surface area: surface functionalization, CO_2 uptake
- Porosity: heat capacity and thermal conductivity, durability

Polymer aerogel synthesis adapted to incorporate amine

New to this project: adapted solvent exchange (“post-processing”)

- Project Challenge 1 addressed
- Explored two classes of post-processing and conditions within each
- Down-selected post-process conditions to maximize amine content and surface area
- Gen 1 process conditions fixed to enable exploration of formulation space → Challenge 2

Testing capabilities established

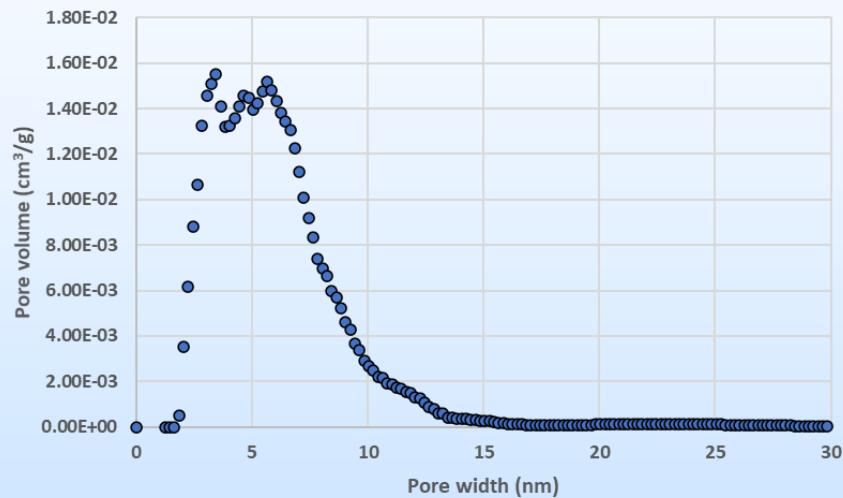
- Physical characterization: N₂ adsorption, elemental analysis, FTIR
- Adsorption isotherms: CO₂ adsorption isotherms
 - Capability established at PARC
 - Next steps: extend to lower pressure measurements
- Preliminary cycling: TGA in dry and 30% RH
 - Installation of automatic cycling planned for Aug
- Fixed bed breakthrough testing (LLNL)
 - First materials sent

Preliminary characterization @ PARC

Pore characteristics
Isotherms

+

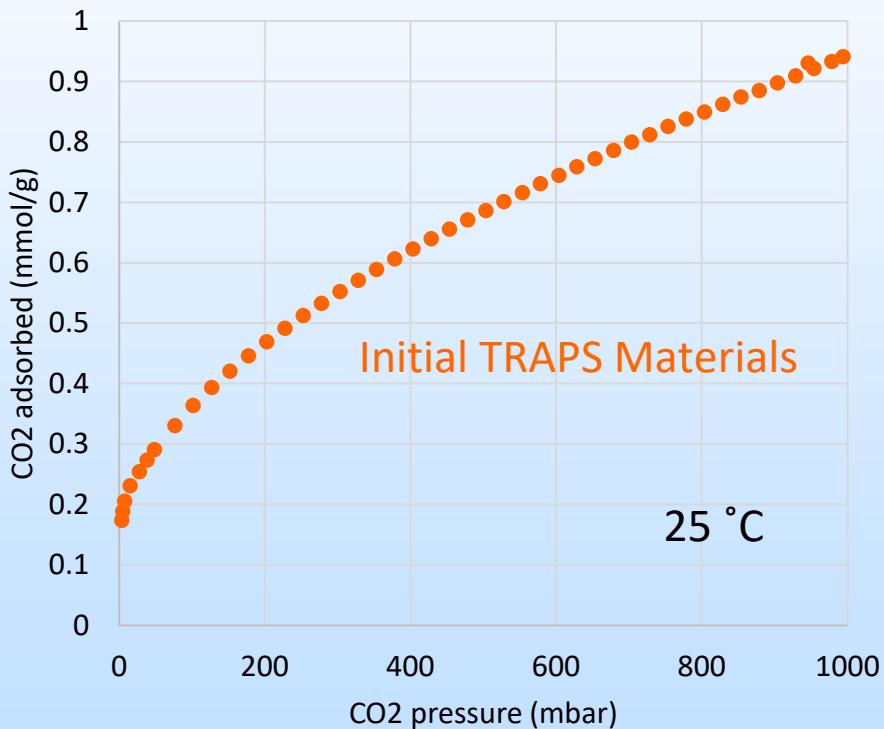
Fixed bed characterization @ LLNL


Gemini: custom fixed bed
sorbent testing instrument

Produced amine-containing materials with high surface area

Gel composition	Process Conditions	Surface area (m ² /g)
No amine	None/NA	964
Low amine	none	470
	Process 2.0	275
	Process 1.0	346
Baseline amine	none	199
	Process 2.0	24
	Process 1.0	123
	Process 2.1	522

Baseline amine formulation, Process 2.1, pore size distribution



- Process 2.0 yields lower specific surface area than Process 1.0
- The lower surface area is reversible via Process 2.1
- Process 2.1 leads to highest amine content and most promising pore structure
- **Surface area of 522 m²/g** is significantly higher than typical ceramic-supported sorbents

Investigations in progress:

- Impact of surface area on CO₂ adsorption/desorption
- Quantitative correlation between process conditions and amine content

Initial sorption experiment shows CO_2 uptake

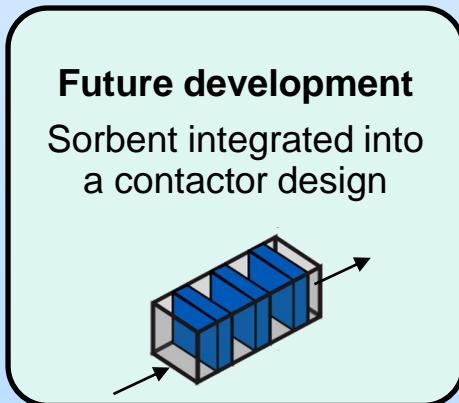
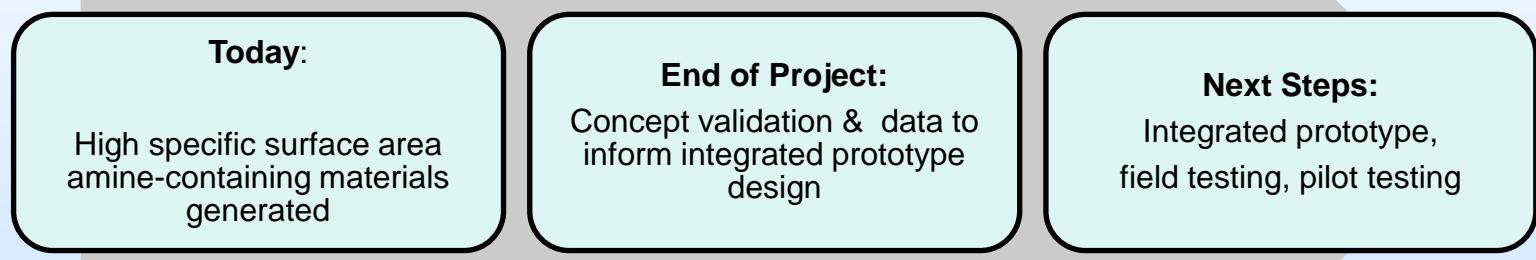
- Initial, unoptimized material shows CO₂ uptake

Next steps

- Improve uptake with formulation and process conditions
- Explore sorption at different temperatures
- Upgrade instrument to study low pressure regime

Synthesized material for breakthrough testing

- Materials exchanged with LLNL for benchmarking and breakthrough testing in a fixed bed column
- Produced material at ~5 g scale for breakthrough testing
- Porosity is robust to pelletization and handling

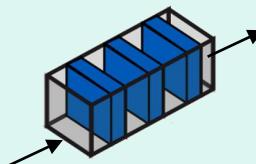


Un-pelletized Pelletized

Sample	BET surface area (m ² /g)
Un-pelletized	250
Pelletized	230

Plans for future development

This project: TRL 2 → TRL 3

Primary focus: validating materials performance (capacity, kinetics, longevity)



- Contactor designs
- Integration with energy sources
- Integration with downstream processes
 - Utilization
 - Compression/sequestration

Opportunities for Collaboration

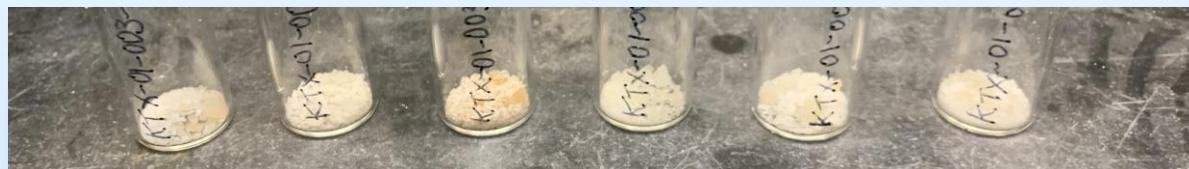
Future development

Sorbent integrated into a contactor design

- Contactor designs
- Integration with energy sources
- Integration with downstream processes
 - Utilization
 - Compression/sequestration

Partnerships for further technology development:

- Detailed design of integrated DAC system
- Passive or low pressure drop systems
- Field and pilot unit construction and testing
- Technology commercialization


Collaboration with PARC/Xerox: engage@parc.com

- Multidisciplinary research: materials, hardware systems, software
- Cleantech strategic business unit for technology commercialization

Summary Slide

Achievements in first quarter:

- Adapted synthesis process to incorporate materials with amine
- Downselected post-process conditions
- Initial materials exhibited CO₂ uptake at low pressures
- Materials with specific surface area >500 m²/g were obtained

Next steps:

- Characterization of CO₂ adsorption/desorption performance:
 - Lab scale
 - Fixed bed testing
- Shift focus to Formulation Challenges 2 and 3:
 - Maximizing amine content and pore structure
 - Formulation for cycle life/degradation resistance

Appendix

Organization Chart

Task	Key Personnel	
	parc A Xerox Company	Lawrence Livermore National Laboratory
1: Project management	Dr. Mahati Chintapalli	Dr. Nathan Ellebracht
2: Develop aerogel formulations	Dr. Stephen Meckler Kay Xia	
3: Lab scale aerogel characterization	Dr. Jonathan Bahcman	
4: Aerogel scale-up & Physical characterization	Dr. Stephen Meckler	
5: Fixed bed sorbent testing		Dr. Nathan Ellebracht Dr. Simon Pang
6: Conceptual DAC process design		Dr. Wenqin Li

Gantt Chart – Tasks Led by PARC

Task 1.0: Project Management and Planning

- 1.1 - Project Management Plan
- 1.2 - Technology Maturity Plan
- 1.3 – Quarterly update reports

Task 2.0: Develop Aerogel Formulations

- 2.1 - Develop baseline aerogel formulation
- 2.2 - Aerogel formulation with high amine content

Task 3.0: Lab Scale Aerogel Characterization

- 3.1 - Develop and validate test procedures
- 3.2 - Detailed sub-gram scale testing

Task 4.0: Aerogel Scale-up and Physical Characterization

- 4.1 - Scale-up formulations
- 4.2 - Measure sorbent physical properties

	Q1	Q2	Q3	Q4	Q5	Q6
1.1 - Project Management Plan						
1.2 - Technology Maturity Plan						
1.3 – Quarterly update reports		*	*	*	*	*
2.1 - Develop baseline aerogel formulation						
2.2 - Aerogel formulation with high amine content		M				
3.1 - Develop and validate test procedures				M		
3.2 - Detailed sub-gram scale testing		M		M		
4.1 - Scale-up formulations						
4.2 - Measure sorbent physical properties	M					M

Gantt Chart – Tasks Led by LLNL

Task 5.0: Fixed Bed Sorbent Testing

5.1 - Fixed bed testing of sorbents

5.2 - Optimization of fixed bed process conditions

Task 6.0: Conceptual DAC process design

- 6.1 - Develop and analyze high level process flow
- 6.2 - Develop a cost projection