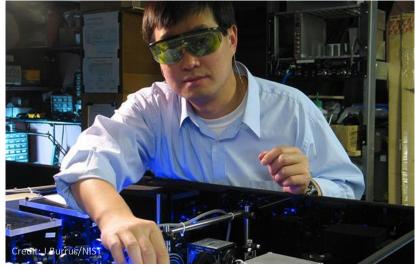


DIRECT AIR CAPTURE OF CO₂ and Carbon Removal

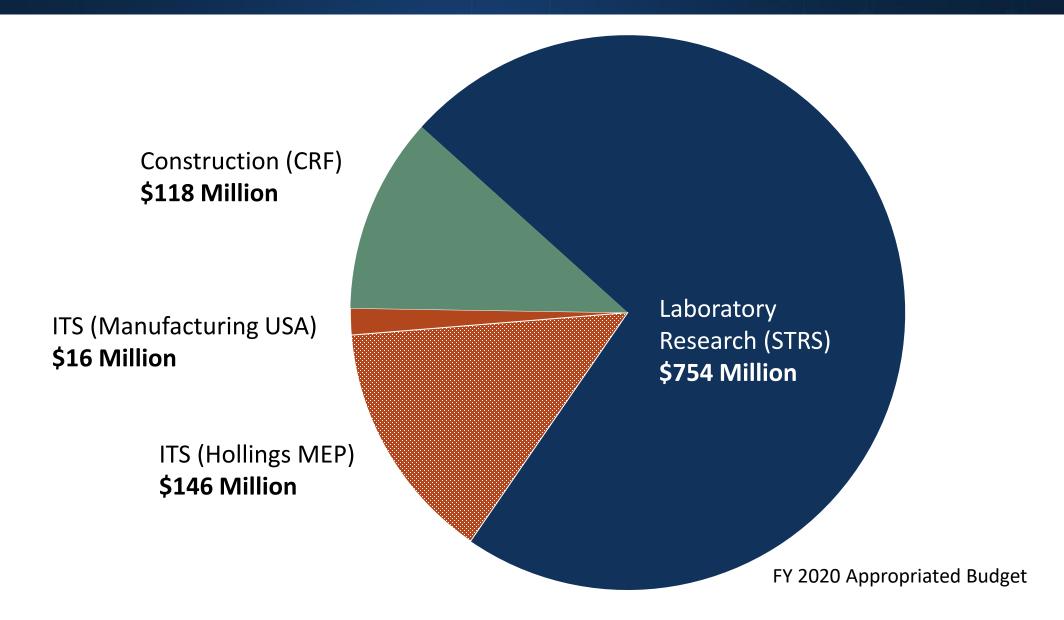
MATERIALS MEASUREMENTS LAB - PAM CHU, ANDREW ALLEN
CENTER FOR NEUTRON RESEARCH - CRAIG BROWN, DAN NEUMANN
ENGINEERING LAB - ARON NEWMAN


dac.ccus@nist.gov

NIST Mission

To promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life

NIST's Biggest Strength: Our Reputation



- Technical excellence
- Integrity
- Uncompromising
- Rigorous
- Unbiased
- Industry focused
- Non-regulatory

NIST FY 2020 Budget: \$1.034 B

NIST AT A GLANCE Industry's National Laboratory

3,500+
ASSOCIATES

14
NATL OFFICE FOR
MANUFACTURING
INSTITUTES

NIST Laboratory Programs

Material Measurement Laboratory

Physical Measurement Laboratory

Engineering Laboratory

Information Technology Laboratory

Communication Technology Laboratory

NIST Center for Neutron Research

Unique NIST Products and Services

1,200 Standard Reference Material (SRM) products

100 Standard Reference Data (SRD) products

600 measurement services

Every year:

32,000 SRM units sold

13,000 calibrations and tests

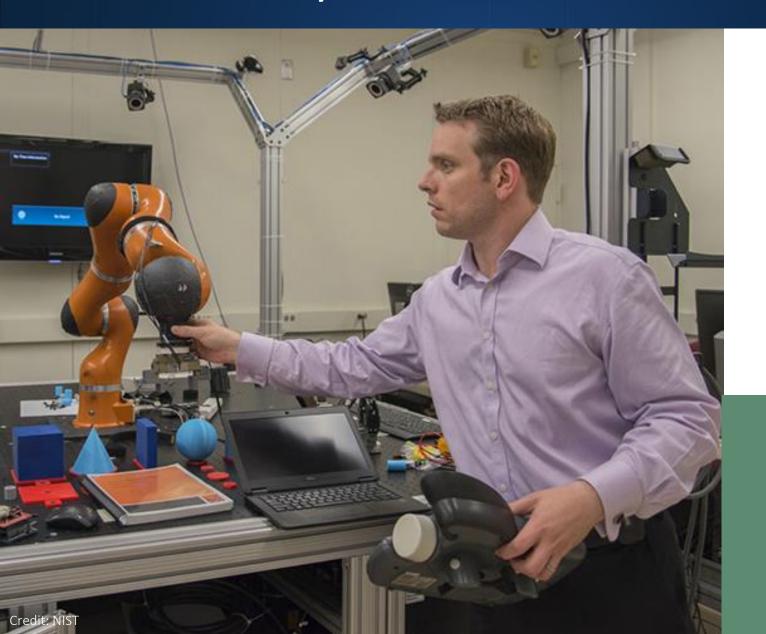
800 accreditations of testing and calibrations laboratories

Million-Pound Deadweight Machine

Credit: NIST

Reference Materials

Important Role e.g.


- 14 cements
 numerous geological materials
- Building/infrastructure materials
- SRM zeolites etc.

NIST's technical expertise results in improved RM's and development of new materials that are fit-for-purpose

Documentary Standards

Important Role

- 400+ NIST technical staff in
 100+ standard committees
- Leadership in international standards bodies

NIST's technical expertise results in improved standards and U.S. competitiveness

FY21 NIST appropriation language

ΙB

Union Calendar No. 366

116TH CONGRESS

2D SESSION

H. R. 7667

[Report No. 116-455]

IN THE HOUSE OF REPRESENTATIVES

July 16, 2020

Mr. Serrano, from the Committee on Appropriations, reported the following bill; which was committed to the Committee of the Whole House on the State of the Union and ordered to be printed

A BILL

aking appropriations for the Departments of Commerce and Justice, Science, and Related Agencies for the fiscal year ending September 30, 2021, and for other purposes.

PER H.R. 7667 AND ENACTED IN THE CONSOLIDATED APPROPRIATIONS ACT, 2021, NIST IS CHARGED TO SUPPORT THE NATION'S EFFORT

	2020	2021	2022
Office of Fossil Energy CCUS	\$218M	\$228M	
DOE DAC/ negative emissions	\$50M	\$72.5M	
NIST		\$3M	

"FOR DIRECT AIR CAPTURE AND CARBON DIOXIDE REMOVAL RESEARCH, SPECIFICALLY TO INCREASE WORK ON DEVELOPING STANDARD REFERENCE MATERIALS AND TEST PROCEDURES FOR DIRECT AIR CAPTURE AS WELL AS TO INCREASE SUPPORT FOR CARBONATE MATERIALS DEVELOPMENT, TESTING, AND CERTIFICATION FOR CONSTRUCTION MARKETS."

VISION (DAC FOCUSED)

SUPPORT AND VALIDATE SOLUTIONS TO ACHIEVE NET ZERO AND NET NEGATIVE EMISSIONS SYSTEMS

M.R. Hudson, W.L. Queen, J.A. Mason, D.W. Fickel, R.F. Lobo and C.M. Brown. Unconventional, highly selective CO2 adsorption in zeolite SSZ-13. Journal of the American Chemical Society 10.1021/ja210580b

- Identify how NIST can augment the nation-wide R&D effort through stakeholder engagement and partnerships
- Foster NIST-wide connections and collaborations
- 3 Internal discussion groups
 (each ~45 participants, 15 projects proposed)
- 3 Mini-workshops with external stakeholders
- Identified FY21/22 projects

External discussion groups

CONSIDERATIONS FOR SOLID SORBENTS

WHAT MATERIALS?

- Hybrid/MOF-based
- Porous inorganic-based
- Porous polymers

W/INCORPORATED AMINES...

WHAT CONDITIONS?

- 100 PPM TO 450 PPM CO₂ (0.045%) ISOTHERMS
- ATMOSPHERIC COMPOSITION PREFERRED
- ENTHALPY OF ADSORPTION
- ENERGY OF REGENERATION
- STABILITY, CYCLABILITY, LIFETIME

• ..

- What are the critical measurement and metrology needs (both fundamental and applied) that need to be addressed for successful DAC deployment?
- Needs for reference measurements, SRM, SRD?
- Needs for validation of computational simulations, reference data, database development?

External discussion groups

Solid sorbents 5/6 – Craig Brown

- D. Hancu NETL- DoE
- T. McDonald Mosaic Materials
- P. Llewellyn Total

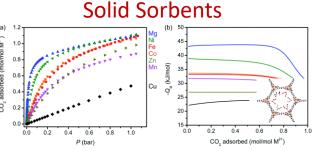
Membranes/Composites 6/10 – Chris Soles and Chris Stafford

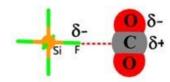
- YuanQiao Rao Core R&D, Dow Chemical
- Chunqing Liu, Membranes R&D Group, Honeywell
- William J Koros Georgia Institute of Technology

Mineralization/ Industrial Products

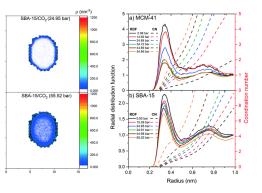
5/20 – Aron Newman and Andrew Allen

- G. Sant Carbon Built & UCLA
- R. Aines LLNL
- V. Atakan Solidia
- M. Blondes, USGS


Main outcomes: Sorbents


- [1] Lack of good techniques/procedures in the community
- [2] **Need** at least one 'well understood' material (PEI loaded oxides; MOF, ...) standard recipe; attrition rates, lifetime, decomposition mechanisms, ...
- [3] Must include H₂O and O₂; consider atmospheric 'impurities' later
- [4] Differentiate between bulk and engineered contactor
- [5] **Need** enthalpies; kinetics for uptakes; thermodynamics for desorption
- [6] **Need** to understand material lifetime, loss of capacity

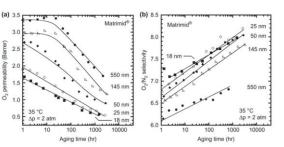
CO₂ adsorption $2 R-NH_2 + CO_2 \rightarrow R-NH_3^+ + R-NH-COO^-$

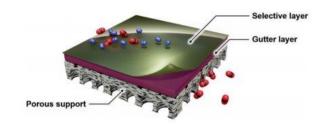

$$R-NH-COO^{-} + R-NH_{3}^{+} \xrightarrow{} CO_{2} + 2 R-NH_{2}$$

CO₂ adsorption Mg-MOF74 10.1039/C4SC02064B

CO₂ adsorption SIFSIX MOF 10.1021/acsami.8b03358

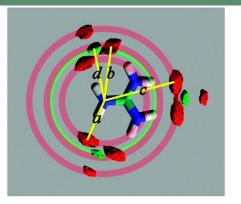
Organization of CO₂ confined in silica nanopores 10.1039/D0EN01282C


Main outcomes: Membrane/Composites


Part of the materials problem, perhaps not a solution in itself

- [1] **Need** to monitor chemical and physical changes to materials as a function of contaminants (O_3 and H_2O , NOx, SOx, organics, and particulates), T, t...
- [2] **Need** to establishing general both chemical and physical structure-property relationships (primary material design to final morphologies of devices)
- [3] **Need** to ensure candidate materials are scalable and engineerable for devices (e.g. hollow fiber mat morphology) and range of post-capture utilization tech
- [4] **Need** to ensure key measurements are applicable to wide range of materials and gaseous compositions: low uncertainty

Membranes


https://doi.org/10.1016/j.polymer.2010.06.004

CO₂ sorption in Ultrathin PEI films 10.1038/s41428-020-00429-z

structure of aqueous guanidinium carbonate

https://doi.org/10.1021/jp0572028

Main outcomes: DAC mineralization through carbonation

- [1] **Need** to know carbonate loadings with respect to known history
- [2] **Need** to know accessible porosity and surface area with respect to known history
- [3] **Need** to know spatial variability in permeability and transport properties
- [4] **Need** to Differentiate between bulk powders, bulk monoliths, slices
- [5] **Must** consider different environmental conditions temperature, pressure, humidity
- [6] **Need** to understand material lifetime, loss of capacity, leaching...
- [7] **Need** to develop reference methods and materials for process kinetics

I: Mixing and bubbling in CO₂ Quian et al., J. CO₂ Util., **25**, 31-38 (2018). II: Mixing with other ingredients to make concrete

Includes:

- carbonates in available ultramafic rock formations, mine tailings, industrial waste products such as fly ash, slag, etc.
- Industrial products such as cement and concrete used in construction

(carbonation-modified cement hydration processes may be exception)

NIST Major Capabilities

- Neutron Scattering, Synchrotron techniques
- Facility for Adsorbent Characterization & Testing
- Positron Annihilation Lifetime Spectroscopy
- Nanocalorimetry
- IR-VASE (variable angle spectroscopic ellipsometry)
- Combined Cross-sectional Raman Microscopy with ATR-FTIR and Confocal Microscopy
- HRTEM-STEM/EELS/EDXS: Sub-nm Porosity & Composition
- High-throughput measurement modalities: enabling AI/ML
- Polymers
- Metrology and standards for carbon dioxide systems
- Carbon combustion analysis, TGA, chemical titration, classical methods, coulometry, HPLC, GCMS, NMR (P,T),
- Digital Holographic Microscopy
- DFT, MD, GCMC, Multiphase Transport, Phase Separation, Wetting/Nonwetting fluids. Diffusive Transport, Sorption/Desorption, Lattice Boltzmann methods,
- Using AI to discover new solid sorbent materials for Direct Air Capture

NIST's DAC-CCUS Future?

- Flue gas capture (different requirements compared to DAC)
- CO₂ transformation to high value chemicals
- CO₂ pipeline transport
- Measurements and standards to monitor and manage ocean carbon systems and support direct ocean capture (DOC)
- Development of metrology and standards to support carbon accounting
- Measurement and standards to manage and accelerate geological storage
- Augmentation of projects to facilitate carbon mineralization in building materials