Options for Removing CO₂ from California's Air

Roger AinesEnergy Program Chief ScientistLawrence Livermore National Laboratory

LLNL-PRES-825083

Perspectives

Source: Jérôme Hilaire Mercator Institute

Source: Jérôme Hilaire Mercator Institute

Source: Jérôme Hilaire Mercator Institute

Source: Jérôme Hilaire Mercator Institute

Source: Jérôme Hilaire Mercator Institute

Source: Jérôme Hilaire Mercator Institute

Source: Jérôme Hilaire Mercator Institute

Source: Jérôme Hilaire Mercator Institute

We love to think globally, but most actions will be local

Overall economy or region

Academics love this perspective "optimal" Carbon tax is the preferred tool from this view

Business

- Net zero is the common goal
- Must deal with your own emissions, your suppliers, and customers
- Need specific pathways

Sector (like transportation)

Mixture of the first two – easier to make clear policy

We love to think globally, but most actions will be local

Overall economy or region

Academics love this perspective "optimal" Carbon tax is the preferred tool from this view

Business

- Net zero is the common goal
- Must deal with your own emissions, your suppliers, and customers
- Need specific pathways

Sector (like transportation)

Mixture of the first two – easier to make clear policy

California's Path to Zero Requires Carbon Removal

How can we remove CO_2 from the air?

1. Natural Solutions (trees and soil)

- 2. Biomass Solutions (permanently store carbon from plants)
- 3. Direct air capture (machines and chemical systems to filter CO_2 from the air)

Trees and Soil

The world's farm soils have lost at least 487 gigatons of CO_2 (equivalent).

Can we put it back?

How fast?

Sanderman et al. 2017

2 Capture biomass carbon while producing products like hydrogen

Using biomass must be restricted to true waste – but there is a lot of that

Using forest waste is a great place to start

LinkBel

58 million tons of biomass waste is available

- We estimate that 58 million bone-dry tons will be available from waste sources in 2045
- 100% conversion to CO₂ would yield 106 MT CO₂
- Only waste biomass considered — no energy crops
- Much of this is burned or allowed to decay today

The carbon removal value of biomass greatly exceeds its energy value at realistic carbon prices

Carbon price $(\$/tCO_2)$

Conventional SMR

Conventional SMR Syngas Capture

Carbon Intensity of Hydrogen: $+7 \text{ to} - 20 \text{ kg CO}_{2}/\text{kg H}_{2}$ **Conventional SMR Syngas Capture Full SMR Capture** Hydrogen from Biomass with Capture **Biogas with Capture** Electrolytic 7 kg CO_2 3 - 20 0 -7 per kg H₂ **Carbon** Intensity 20 kg CO2 removed for

every kg H2 produced!

3 Build machines to clean the air

Chemical filters, solvents, and minerals that absorb CO₂

1000 ton per year capture facility, Zurich

Learning curves for natural gas and geothermalpowered DAC systems

- Does not depend on the rate of construction.
- Both count total global units built.
- Geothermal units limited to California heat supply.
- Gas units learn more slowly because they are bigger.

Millions of Tons Globaly Deployed

Bottom Line

The three major options can provide 125 M tons of removals with net benefits

1. Natural and Working Lands

2. Waste Biomass Conversion 3. Direct Air Capture with to Fuels with CO_2 Storage CO_2 Storage

25 MT/year 83 MT/year >17 MT/year Technological readiness: mid-to-high — no new breakthroughs required

GETTING TO NEUTRAL

OPTIONS FOR NEGATIVE CARBON EMISSIONS IN CALIFORNIA We evaluated the potential in tons per year, and estimated 2045 costs

https://www-gs.llnl.gov/content/assets/docs/energy/Getting_to_Neutral.pdf

LLNL-TR-796100

California's 2045 least-cost path to 125 MT/year of carbon removal and permanent storage would average about \$65/ton

The least-cost path to 125 MT/year uses natural solutions, gasification of biomass to H_2 , and some direct air capture – but pure combustion (BECCS) is close.

35

Much of the removed CO_2 will have to go back underground.

 CO_2 's properties are very similar to oil. It can be stored in the same places. The technology, people, and jobs are the same for both.

The sunset of the oil age can also be the rise of the storage age.

There is plenty of safe space in California to store CO_2 underground in the same rocks that have held oil and gas for millions of years.

LLNL has identified **17 billion tons** of safe storage in **just 2 areas** of the Central Valley. As much as **200 billion tons may be available.**

Permanent geologic storage is available

We need to be stronger in our messaging that storge is safe

Cumulative Department of Energy investment in carbon capture and storge development currently exceeds \$1.7 Billion

2017

2035

Advanced

20 years of CCS testing show it is safe and reliable

"We calculate that realistically well-regulated storage in regions with moderate well densities has a 50% probability that leakage remains below 0.0008% per year, with over 98% of the injected CO_2 retained in the subsurface over 10,000 years."

"Large-scale CO_2 storage research projects are being conducted by the U.S. Department of Energy (DOE) in various geologic settings across the United States ... To date, more than 14 million metric tons (MMT) of CO_2 have been successfully injected."

A total of five Best Practices Manuals were revised in 2017.

DOI: 10.1038/s41467-018-04423-1 OPEN

Estimating geological CO₂ storage security to deliver on climate mitigation

Juan Alcalde, Stephanie Flude, Mark Wilkinson, Gareth Johnson, Katriona Edlmann, Clare E. Bond1, Vivian Scott, Stuart M.V. Gilfillan, Xènia Ogaya & R. Stuart Haszeldine

PERMANENCE AND SAFETY OF CCS

https://netl.doe.gov/coal/carbonstorage/faqs/permanence-safety

Getting to Neutral Takeaways

Mother nature can't do it on her own —Key outcome for State Legislators

Biomass should be used to draw down CO₂ first, rather than emphasize energy —Guides international standards

 H_2 from biomass with CO_2 storage is a leading technology for California —Double win of drawdown and clean H_2 Google 'Getting to Neutral' to see the full report.

Natural solutions are about 20% of what we need

Biomass-H2-CO2 demo in Swindon, UK

Keep a Big Tent Learn to like lots of approaches.

Embrace all the technologies and approaches necessary to fully decarbonize the economy.