Piperazine Advanced Stripper (PZAS™) Front End Engineering Design (FEED) Study

DE-FE0031844

Gary T. Rochelle
University of Texas at Austin

U.S. Department of Energy
National Energy Technology Laboratory
Carbon Management and Natural Gas & Oil Research Project Review Meeting
Virtual Meetings August 2 through August 31, 2021
Agenda

• Overview and Objectives
• Site Info
• Technology Details and Layout
• Purchased Equipment Costs
• Schedule
• Takeaways
Program Overview

- Funding ($5.4 MM)
 - 4.1 MM DOE
 - 1.1 MM cost sharing- ExxonMobil, Total, Chevron
 - 0.3 MM from Honeywell UOP outside DOE

- Expected Performance Dates: 10/2019 – 3/2022

- Project Participants
 - Golden Spread Electric Cooperative (GSEC) – Host
 - University of Texas at Austin (UT) – Modeling/ Technology
 - Trimeric – Process Engineering
 - AECOM – EPC
The Objective: Accurate installed cost of PZAS™ on NGCC at GSEC Mustang Station

Complementary Benefits:

• Develop commercial project at Mustang Station
• Qualify PZAS for use on NGCC cogen
• Provide commercial cost detail
• Optimize PZAS & other 2G capture processes
• Guide R&D of capture technology
Host Site - Mustang Station
Golden Spread Electric Cooperative
Denver City, TX Cooperative
Southwest Power Pool
460 MW NGCC
2 GT/1 ST
West Texas Permian Basin
Available land
Cheap Gas from Waha
CO₂ sales for EOR
CO₂ pipeline one mile south
No cooling water for Capture
Southwest Power Pool, August 2021
Gas-fired power to back up wind

Total projected load

Projected Available Wind
Southwest Power Pool, August 2021

Gas-fired plants to back up wind power.

- Total projected load: 50,000 MW
- Projected Available Wind: 37% GAS, 43% COAL
- Graph showing daily load and generation for the week of August 2021.
PZAS™ for NGCC

5 molal piperazine:
- 2X CO₂ absorption rate of MEA
- Loss rate <0.3 kg/ton CO₂
- Tolerates 150 °C/7 bar stripper

90% capture

Stack

Water Wash

Absorber

Flue Gas

CO₂ Product

Compressors and Coolers

CO₂ Exchanger

CO₂ Cooler

No Solvent Bypass

Cold Rich Bypass

Warm Rich Bypass

Steam Heater

Hot Cross Exchanger

Cold Cross Exchanger

No DCC

Pump-around Intercooling
Air cooling dominates plot plan
25% of purchased equipment cost

Two Gas Turbines w HRSGs and Stacks
90% Capture (190 tonne/hr) in Two Absorbers
• Each train treats all flue gas from 1 GT and one new boiler
• Turndown to match Mustang Station operation
• Off-site fabrication of large equipment
• Sequenced construction
Absorber Design

- Two 40 x 47 ft rectangular absorbers
- Two absorber beds and one water wash section, with pump-around intercooling
 - Total packing height = 35 ft
 - Total absorber height = 117 ft
- Max sump depth = 18 ft with Vertical sump pump to reduce NPSH
- 40 ft cylindrical stack on top of absorber dictated by CEMS
Absorber Cost dominated by Shell, not Packing

- Shop and field-construction costs in progress
- Costs for materials and shop fabrication estimated to be ~$20M
- Shell costs ~80% of total (including internals but not foundations and platforming)
Advanced Stripper

11-ft diameter stripper
Shop fabricated
Plate & Frame Exchangers sized to provide 2.85 GJ/t CO$_2$
Consistent with low cost gas

Lean Pumps
Ductwork and Boilers

2 package boilers to provide steam increases gas rate by 7%, CO₂ by 20%

Tie in to Existing stacks

2 Fans/Abs

Gas Boiler
Inlet duct CFD

- Discharge from fans
- Boiler Flue Gas Inlet
- Absorber
All cooling by air

• API 661 standard
• Materials of Construction – 304SS with aluminum fins
• Nominal approach temperature 11°C

<table>
<thead>
<tr>
<th>Air Coolers</th>
<th>% of Total Air Cooler Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorber Intercoolers</td>
<td>~52%</td>
</tr>
<tr>
<td>Wash Water Coolers</td>
<td>~45%</td>
</tr>
<tr>
<td>CO₂ Coolers</td>
<td>~3%</td>
</tr>
</tbody>
</table>
Wash Water Air Cooling, 18 bays for each train

- Water Storage
 - Allows 24-hour cycle
 - To balance on hot days

- 3 pass uses piping on both sides
Compressors

• Low-speed reciprocating machine w automatic load reduction
 o One 9,100 hp compressor/process train
 o Better turndown than integrally-geared centrifugal design
 o Higher stripper P of PZAS™ (5 -6 bar) reduces power & capital

• Interstage cooling by air

• TEG Dehydration around 14% of total compressor package cost
<table>
<thead>
<tr>
<th>Equipment</th>
<th>Purchase Cost ($ x 10^6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air coolers</td>
<td>33</td>
</tr>
<tr>
<td>Absorber</td>
<td>28</td>
</tr>
<tr>
<td>Compressors</td>
<td>19</td>
</tr>
<tr>
<td>Reclaiming/Solvent treatment</td>
<td>15</td>
</tr>
<tr>
<td>Packaged boilers</td>
<td>10</td>
</tr>
<tr>
<td>Exchangers</td>
<td>8</td>
</tr>
<tr>
<td>Stripper</td>
<td>5.5</td>
</tr>
<tr>
<td>Fans</td>
<td>2.8</td>
</tr>
<tr>
<td>Utilities</td>
<td>0.9</td>
</tr>
<tr>
<td>Process BOP</td>
<td>0.1</td>
</tr>
<tr>
<td>Total PEC</td>
<td>122</td>
</tr>
<tr>
<td>Event</td>
<td>Date</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Kick Off Meeting; DOE</td>
<td>Feb 2020</td>
</tr>
<tr>
<td>Virtual Kick Off; Mustang Station</td>
<td>Mar 2020</td>
</tr>
<tr>
<td>Project Design Basis</td>
<td>Aug 2020</td>
</tr>
<tr>
<td>Baseline Process Design</td>
<td>Aug 2020</td>
</tr>
<tr>
<td>Equipment Lists</td>
<td>April 2021</td>
</tr>
<tr>
<td>Electrical One-Lines</td>
<td>July 2021</td>
</tr>
<tr>
<td>CapEx</td>
<td>Oct 2021</td>
</tr>
<tr>
<td>Process Modeling Report</td>
<td>Dec 2021</td>
</tr>
<tr>
<td>FEED Report</td>
<td>Mar 2022</td>
</tr>
</tbody>
</table>
Takeaways

- 90% CO₂ capture (190 tonne/hr)
- Total cost of purchased equipment is $122 million
 - Absorbers and air coolers are 50% of the total
- Available land provides easily accessible general arrangement
- Two parallel trains provide flexibility during construction and operation
- 80% of absorber cost is the shell
 - Packing is only 30% of total absorber height
- Dry air cooling is suited to provide all cooling duties
- Reciprocating compressors used with 6 bar stripper and 50% turndown
Department of Energy Award Number DE-FE0031844
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.