NETL Carbon Management and Oil & Gas Research Project Review Meeting

Integrated CCUS Projects and FEED Studies

LafargeHolcim CO₂MENT Colorado Project – FE0031942

August 3, 2021

Claude Letourneau, President & CEO – Svante, Inc. Deborah Jelen, Executive Director – Electricore, Inc.

LafargeHolcim

CO2ment Project- Florence, Colorado

Project Overview

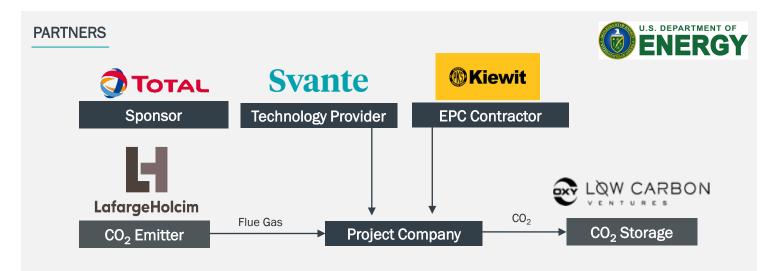
Project Funding:

- Total Funding: \$1,930,524
- Federal Funding: \$1,500,000
- Cost Share Funding: \$430,524 (22%)

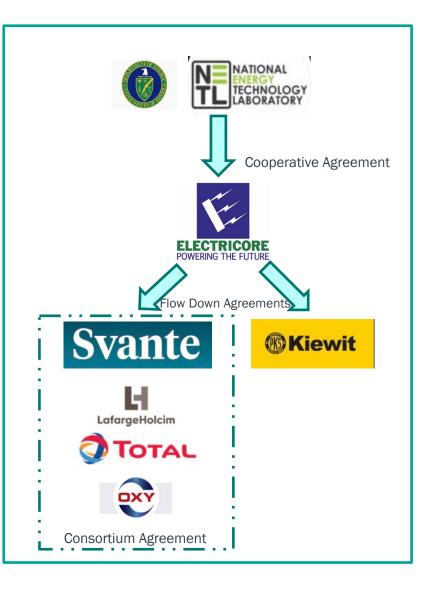
Award Period: 10/1/2020 through 3/31/2022

Project Participants:

- Prime: Electricore, Inc.
- Technology: Svante, Inc.
- Engineer: Kiewit Engineering Group Inc (Kiewit)
- Cost Share: LafargeHolcim, Total, Oxy Low Carbon Ventures (OLCV)

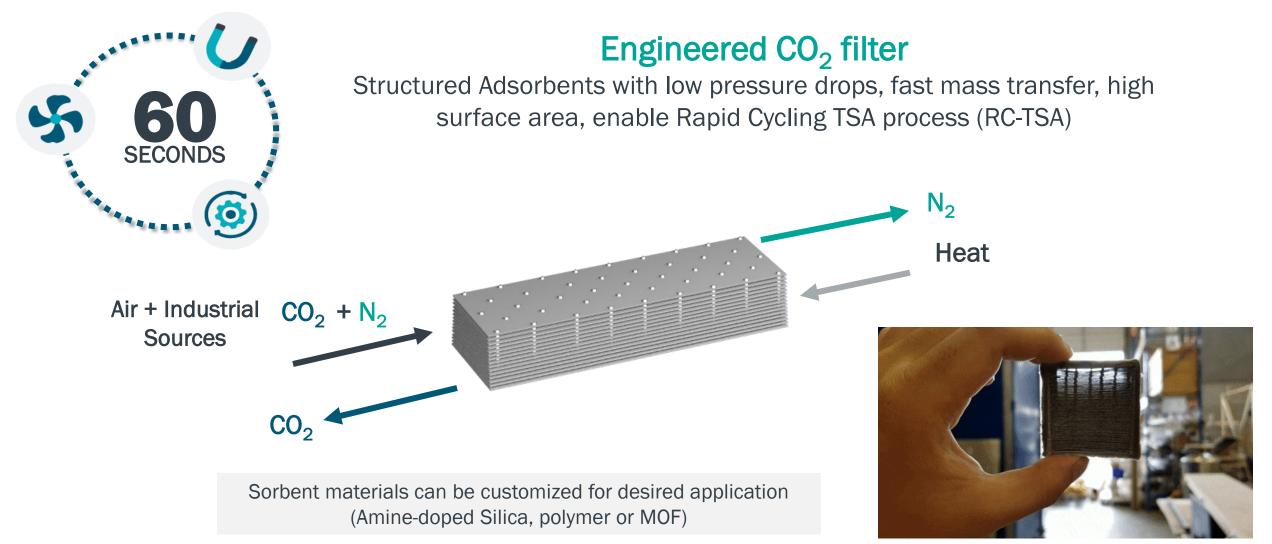

DOE-NETL Team:

- Project Manager: Mr. Carl Laird
- Contracting Officer: Ms. Kelly Haught
- Contracting Specialist: Mr. W. Ryan Simmons

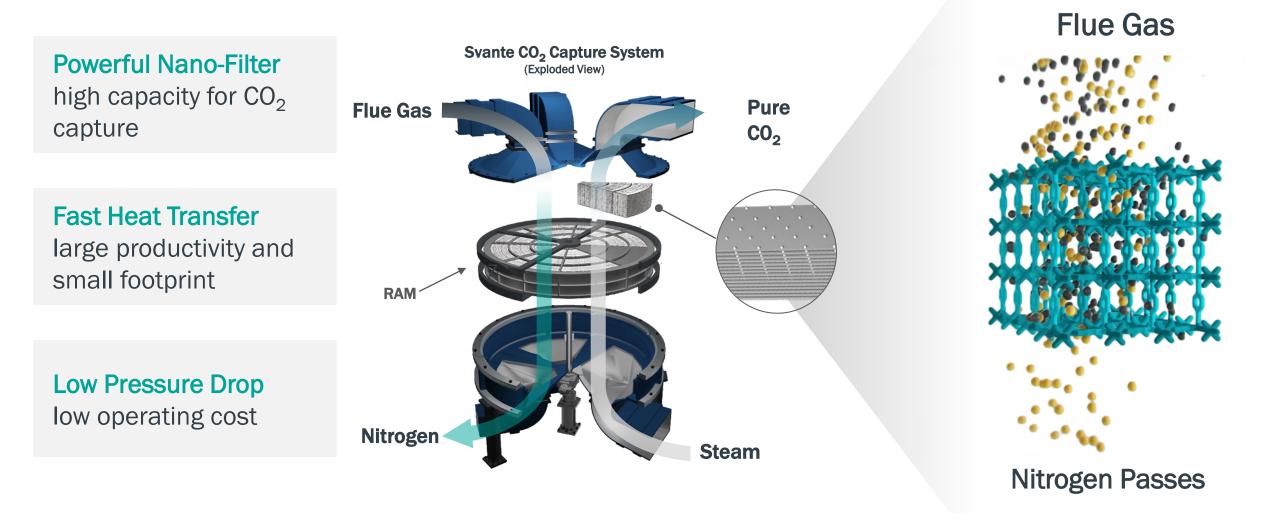

Overall Objective:

The objective of this project is to accelerate the implementation of an 1.5 million tonnes per year (TPY), and first-of-a-kind (FOAK) Svante VeloxoThermTM carbon capture plant by completing the pre-front-end engineering design (pre-FEED) of a fit-for-purpose design at an existing cement plant.

Organizational Structure of the Project Consortium

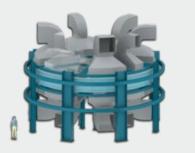


Pre-Feasibility Study of First Commercial Scale Svante Capture Plant for CO₂ storage from cement plant 45Q Tax Credits – 50 \$/tonne Capacity: 1.5 million tonnes per year Florence, CO, USA

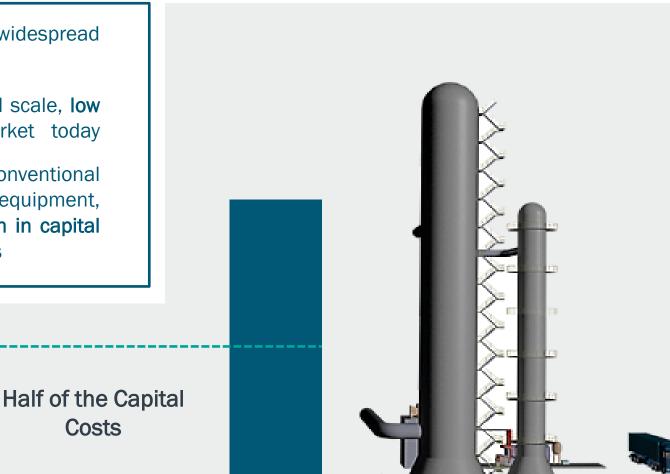

Svante Carbon Capture Technology

(Rapid Cycle Thermal Swing Adsorption (RC-TSA), VeloxoTherm™)

Svante


Svante's Technology – Rotary Adsorption Machine

6

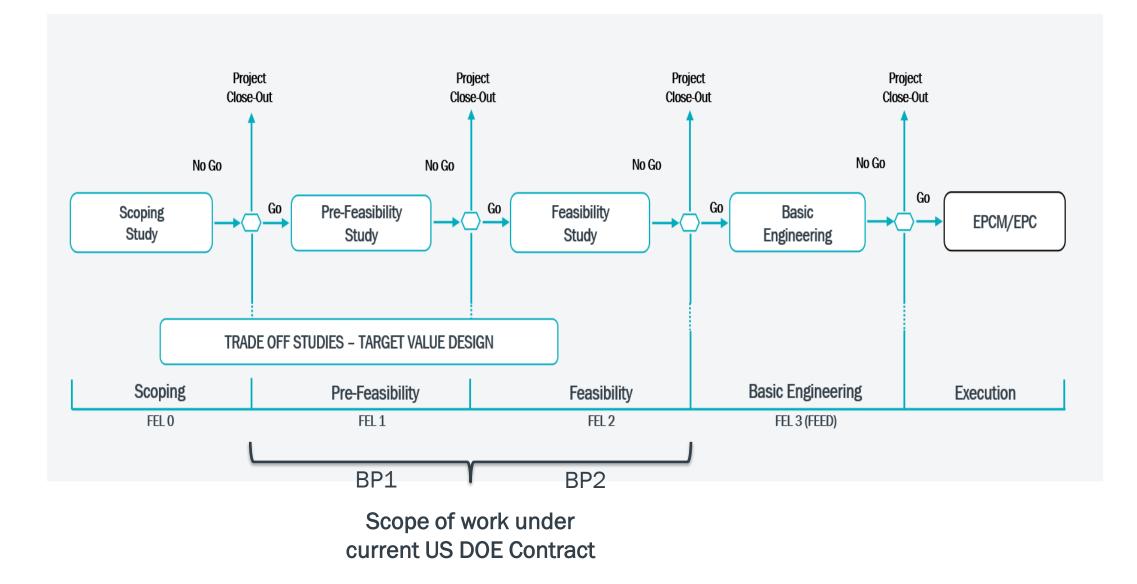

Svante's Technology – Capital Advantage

- High capital cost is currently a barrier to widespread deployment of carbon capture
- Svante's solid sorbent technology is industrial scale, low **CAPEX** solution ready to enable the market today
- By replacing large chemical solvent towers (conventional approach) with a single piece of compact equipment, Svante's technology enables a 50% reduction in capital **costs compared** to first generation approaches

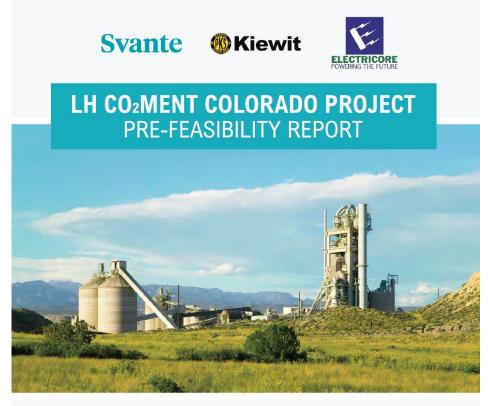
Svante Technology

CAPEX

Costs

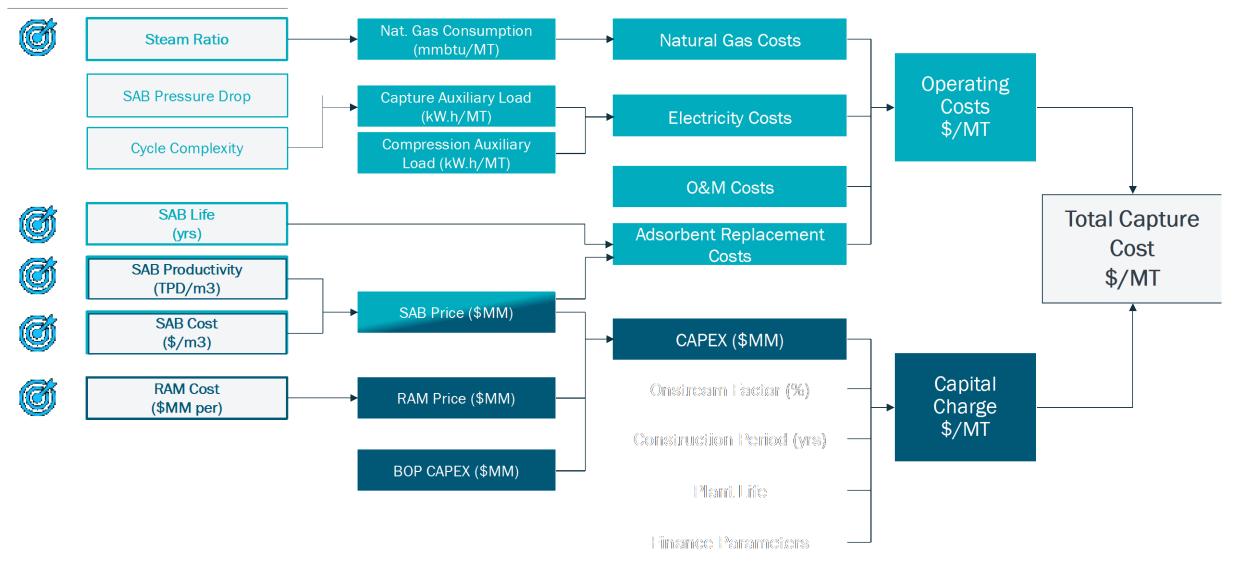

Conventional Approach

Flue Gas Sources and Composition


Flue Gas Sources												
Flue Gas Source	Unit	LH Cement Plant Exhaust TP-1	Natural Gas Steam Boiler	Combined Flue Gas Feed								
Flue Gas CO ₂ Concentration	%v/v dry	12.95	10.15	12.26								
Total CO₂ in Flue Gas	TPD	4189	1086	5275								
CO ₂ Capture Recovery	%	90	90	90								
CO ₂ Captured	TPD	3722	977	4750								
Capture Plant Design Capacity	TPD			4750								
Composition												
Carbon Dioxide	%v/v	10.64	8.5	10.12								
Water	%v/v	17.84	16.24	17.45								
Nitrogen	%v/v	65.09	72.06	66.80								
Oxygen	%v/v	6.43	3.2	5.64								
SO ₂ (max 100ppmv)	ppmv	40-50		40-50								
NOx (NO ₂ 1-2ppmv)	ppmw	200-300		200-300								

Stage Gate Process Definition

LafargeHolcim Colorado FEL 1 Prefeasibility Report



- FEL 1 Completed in BP1
- 4,750 TPD CO₂ (incl. steam generation)
- Net-Zero Index: 0.85
- Capture and Compression TOC \$344MM
- Pipeline Connection \$97MM
- Solar Renewable PPA
- Operating Cash Cost: 28\$/tonne CO₂
- FEL 2 Stage in progress (BP2)

Svante Mapping Technology and Product KPIs to Capture Cost

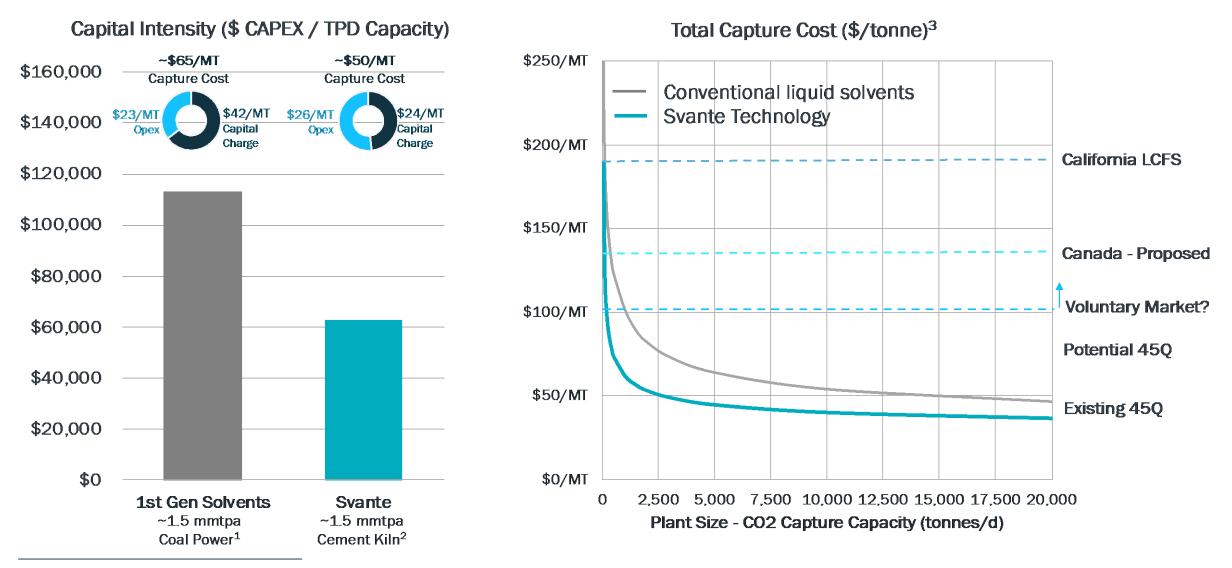
KEY TARGET KPIs

Capital Cost Estimate

Summary of	Summary of Class IV Capital Cost Estimates for Option 2														
Direct Costs	PEC	Material	Labor	Subcontract	Total Direct Costs (MM)										
Svante CO ₂ Capture Process RAM & Adsorbent Beds	-	-	-	\$ 43.168	43.168										
Svante CO ₂ Capture Process BOP (Flue Gas Cooling & HMO)	\$ 24.304	\$ 11.794	\$ 21.198	-	\$ 57.296										
CO ₂ Compression	\$ 22.935	\$ 3.523	\$ 7.827		\$ 34.285										
Utilities:															
Utilities - Steam Generation	\$ 13.513	\$ 1.629	\$ 3.410	-	\$ 18.552										
Utilities - Cooling & Water Treatment	\$ 12.286	\$ 4.081	\$ 6.760	-	\$ 23.128										
Stack & Tie-in	\$ 4.800	\$ 1.584	\$ 3.114	-	\$ 9.498										
Site Specific Infrastructure	-	\$ 24.000	\$ 15.000		\$ 39.000										
Total Direct Installed Cost (BEC)					\$ 224.926										

Svante Original Equipment Package is 12.5 % of Total Overnight Cost

Project Indirects	Cost
Engineering, EPC & Home Office	\$ 37.22
Freight Allowance	\$ 5.66
Process & Project Contingencies	\$ 59.44
Total Project Indirects	\$ 102.31
Total Plant Cost (TPC)	\$ 327.23


Owners Costs	Cost
Commissioning or Start-Up Costs	\$ 6.748
Inventory Capital/Spare Parts	\$ 1.636
Financing Costs	\$ 8.835
Total Owners Costs	\$ 17.219
Total Overnight Cost (TOC)	\$ 344.453

Capital Intensity

	<u>\$/TPD</u>
Baseline Plant:	59,560
Site Specific Infrastructure:	<u>12,860</u>
Total Carbon Capture Plant:	72,420

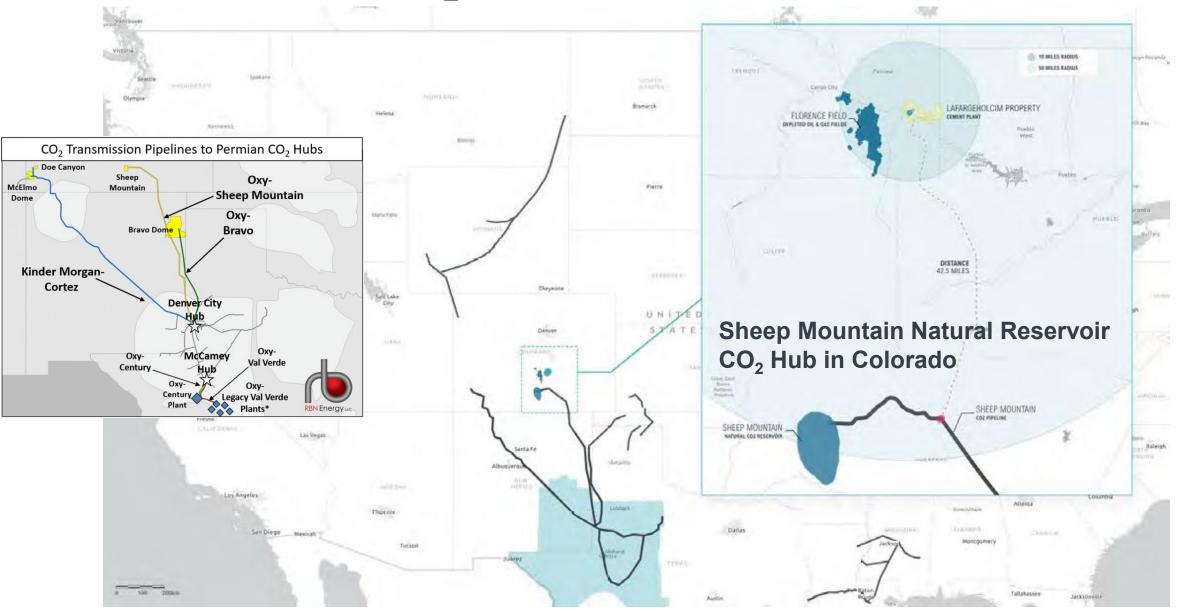
Estimating Capture Cost Scale Effects

1. Cost data source - "W.A. Parish Post Combustion CO₂ Capture and Sequestration Project" Final Public Design Report, DE-FE0003311, Petra Nova Parish Holdings LLC, capture cost estimate by Svante

2. Svante Techno-Economic Analysis (AACE Class IV)

3. Svante estimates

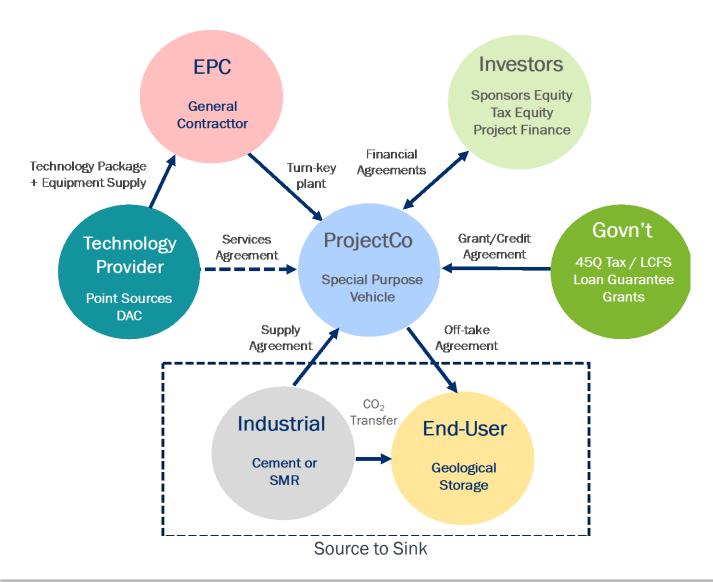
Project Milestones


	Task	Milestone Description	Planned Completion Date	Verification method
\checkmark	1.0	Kick-Off Meeting	10/30/2020	Presentation File
\checkmark	1.1	Updated Project Management Plan	10/30/2020	Submitted PMP
\checkmark	1.2	Technology Maturation Plan	12/31/2020	Submitted TMP
\checkmark	2.0	Phase 1 – Pre-feasibility Report	04/30/2021	Submitted Pre-feasibility Report
	3.8	FEL2 Level Safety Review (Proposed)	01/31/2022	Submitted Safety Review (Proposed)
	4.0	Phase 2 – Feasibility Report	06/30/2022	Submitted Feasibility Report
	4.4	Commercial Site Approval	06/30/2022	Submitted Commercial Site Agreement Letter
	5.1	Technology Environment, Health and Safety (EH&S) Risk Assessment	06/30/2022	Submitted EH&S
	5.2	Techno-Economic Analysis	04/30/2022	Submitted TEA
	5.3	State-Point Data Table	04/30/2022	Submitted State-Point Table

CCUS Project Challenges

Location, Location, Location												
Long Life Emitter and Off-Taker	CO ₂ Pipeline	Large Cooling Load	Contaminants									
CCUS project needs guaranteed flue gas >20yrs CO ₂ storage or utilization has to be guaranteed >20 yrs	Transportation to storage or utilization Public opposition to pipelines in general Costs ranging from \$1.5 to \$4.0 MM/mile	Flue gas and compression cooling required	Many industrial flue gases such as cement contains SOx, NOx, and particulates that poison active capture materials Conventional scrubbing adds costs and risk									
	+ /	footprint										

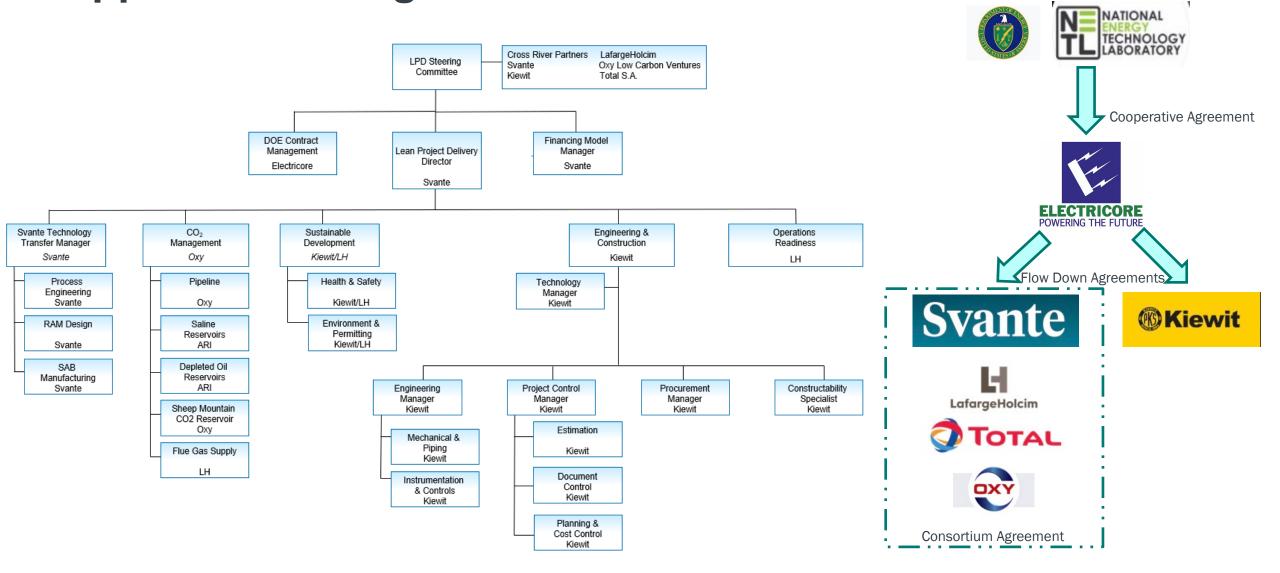
Building a Major CO₂ Hub in Colorado



CCUS Project Challenges

A new Business Model												
Complex Business Structure	CO ₂ Storage Risk and Liability	Government Involvement	Economics									
Specialty expertise required	Who takes liability?	Slower implementation	45Q+ Revenue \$50 to 85 USD/tonne \$50 USD/tonne									
Numerous entities involved	Public opposition like Europe?	Subject to change	Capture and Compression \$25-30 USD/tonne									
Contract overhead high		High overhead effort	Sequestration Cost of capital 8-10% IRR									

Carbon Capture as-a-Service


Key Drivers

- o 45Q Tax Credits
- o LCFS
- Price on Carbon (50+ \$US/tonne)
- Voluntary Carbon Markets
- Border Carbon Adjustments (BCA)

Project Finance

- Similar structure as renewables deployment
- Complex Risk Management Framework:
 - New technology deployment
 - CO₂ ownership liabilities (Cradle to Grave)
 - Multi-party arrangements

Appendix A – Organization Chart

Appendix B – Gantt Chart

- I	Test Marine		Q1			Q2		Q3			Q4		Q4		Q1				
	Task Name	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar
1	PROJECT MANAGEMENT AND PLANNING																		
2	Task 1.0 - Project Management and Planning																		
з	Project Administration																		
4	Milestone - Project Kick-Off Meeting																		
5	Milestone - Project Management Plan																		
6	Milestone - Technology Maturation Plan																		
7	Task 2.0 - FEL-1 Pre-Feasibility Study]									
8	Subtask 2.1 – Data Requirements & Site Specifications																		
9	Subtask 2.1.1 – Overall Project Criteria																		
10	Subtask 2.1.2 - Discipline Design Criteria																		
11	Subtask 2.2 - Preliminary Process Technology Package						_												
12	Preliminary Process Tech Package Mid Term Review			1															
13	Subtask 2.2.1 - Block Flow & Process Flow Diagrams																		
14	Subtask 2.2.2 - Heat & Material Balances																		
15	Subtask 2.2.3 - Utility Flow Diagrams																		
16	Subtask 2.2.4 - Water Balance																		
17	Subtask 2.2.5 – Equipment Sizing & List																		
18	Subtask 2.2.6 - Preliminary Plot Plans																		
19	Subtask 2.3 - Constructability Review and Trade-Off Studies																		
20	Subtask 2.4 - Energy Cost Optimization																		
21	Subtask 2.4.1 - Power Sources and Interconnection																		
22	Subtask 2.4.2 - Natural Gas Sources and Interconnection																		
23	Subtask 2.5 - CO2 Storage																		
24	Subtask 2.5.1 – Saline Aquifer Storage																		
25	Subtask 2.5.2 - Depleted Oil/Gas Field Storage																		
26	Subtask 2.5.3 - Storage in Sheep Mountain CO2 Source Field																		
27	Subtask 2.5.4 - CO2 EOR Storage																		
28	Subtask 2.5.5 - Pipeline Transport																		
29	Subtask 2.6 - Environmental Permitting																		
30	Subtask 2.7 - Capital & Operating Cost Estimates																		
31	Subtask 2.8 - Pre-Feasibility Report																		
32	Milestone - Phase 1 - Pre-feasibility Report																		

Svante

Appendix B – Gantt Chart Page 2

	TaskName		Q3	Q3		Q4			Q1			Q2			Q3	
		Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun
33	Task 3.0 - FEL-2 Feasibility Study]				
34	Subtask 3.1- Design Criteria															
35	Subtask 3.2 - Process Inside Battery Limit															
36	Subtask 3.3 - Outside Battery Limi															
37	Subtask 3.4 – General Arrangements															
38	Subtask 3.5 - CO2 Storage Assessment of High Grade Prospects															
39	Subtask 3.5.1 – Saline Aquifer Storage					1										
40	Subtask 3.5.2 - Depleted Oil/Gas Field Storage					1										
41	Subtask 3.5.3 - Storage in Sheep Mountain CO2 Source Field															
42	Subtask 3.5.4 - CO2 EOR Storage															
43	Subtask 3.6 - Environmental Permitting															
44	Subtask 3.7 - Capital & Operating Cost Estimates															
45	Subtask 3.8 - Safety Review (Proposed)															
46	Milestone - FEL2 Level Safety Review (Proposed)															
47	Task 4.0 - Engineering Design Report															
48	Subtask 4.1 - Inside Balance of Plant															
49	Subtask 4.2 - Outside Balance of Plant															
50	Subtask 4.3 - Field Cost Analysis															
51	Subtask 4.4 - Commercial Site Approval															
52	Milestone - Phase 2 Feasibility Report															
53	Milestone - Commercial Site Approval Letter															
54	Task 5.0 - Technology Assessment															
55	Subtask 5.1 – EH&S Risk Assessment															
56	Subtask 5.2 - TEA															
57	Subtask 5.3 - State-Point Data Table															
58	Milestone – EH&S Risk Report															
59	Milestone - TEA															
60	Milestone – State Point Data Table															

Svante