

Commercial-Scale FEED Study For MTR's Membrane CO₂ Capture Process (DE-FE0031846)

Brice Freeman and Tim Merkel

U.S. Department of Energy

National Energy Technology Laboratory

Carbon Management and Oil and Gas Research Project Review Meeting: Integrated CCUS

Projects and FEED Studies

August 2, 2021

Project Overview

Award name: Commercial-Scale FEED Study for MTR's Membrane CO₂ Capture Process

(DE-FE0031846; FOA-2058)

Project period: 10/1/19 to 6/30/22

Funding: \$5.12 million DOE; \$1.28 million cost share (\$6.40 million total)

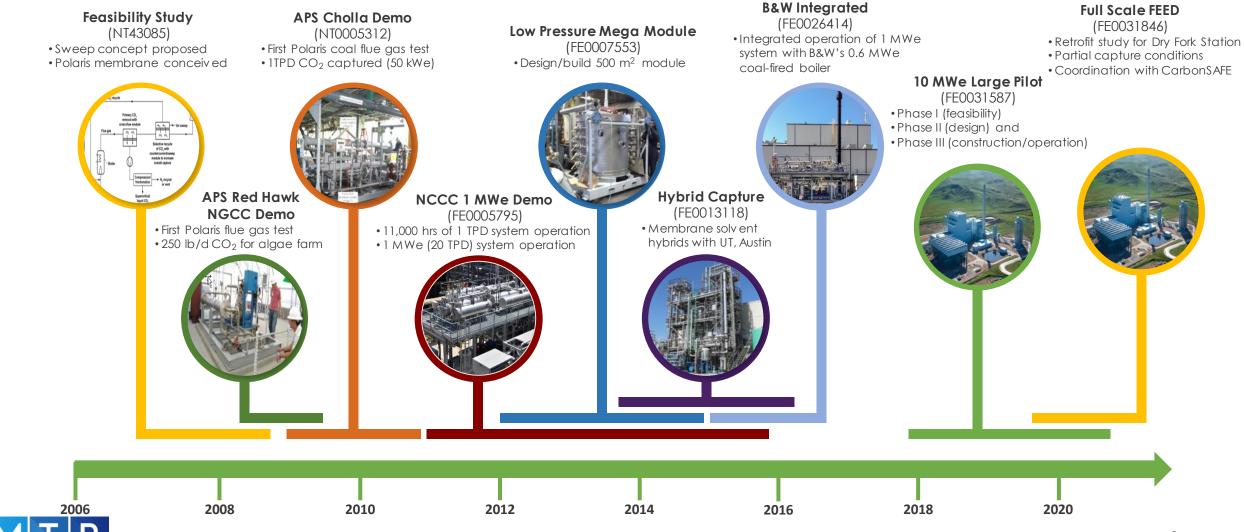
NETL Federal Project Manager: Carl Laird

Participants: MTR, Sargent & Lundy, Trimeric, EPRI, Carbon Management Strategies, and

Basin Electric

Project scope: Conduct a FEED study of MTR's capture process applied to Basin Electric's

420 MWe Dry Fork Station power plant in Gillette, WY


Project plan: The project is organized into 6 tasks with a total duration of 33 months. The

end product will be a FEED report with detailed designs, a construction plan

and schedule, and costs estimated with ±15% reliability

MTR's CO₂ Capture Development Timeline

Site Background: Dry Fork Station

- Single unit, 422/385 MWe coal fired power plant in Gillette, WY
- Owned by Basin Electric (92.9%), and the Wyoming Municipal Power Agency (7.1%)
- Commissioned in 2011
- Low sulfur, sub-bituminous PRB coal from the nearby Dry Fork Mine
- Low NOx burners w/ OFA, SCR, dry lime fluidized bed, fabric filter
- Zero Liquid Discharge (ZLD) facility
- Cooling via an air-cooled condenser
- Home to the Wyoming Integrated CO₂
 Test Center
- Home to the Dry Fork CarbonSAFE project

Process Diagram

Membrane separation unit

Vacuum

1

Flue gas cooling and pre-treatment

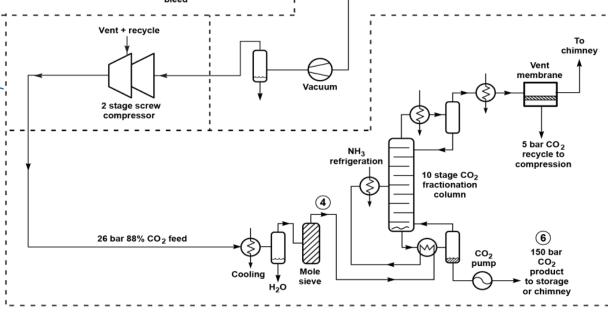
> H₂O makeup

NaOH

bleed

H₂O condensate

2


First and second stage membrane equipment

4

Refrigeration and final CO₂ product pump

3

CO₂ compression

Second-stage membrane

scrubber

contact

Feed

blower

(1)

Permeate

Containerized Membrane Product

Jan 2020

Set Design Basis / RFI

Capture Plant Process Design

Water Management and Balance

Vendor Equipment Selection

General Arrangement

Construction Cost Estimate

Permit Review

Cost Estimates and Reporting

March 2022

Dry Fork Station

DCC

Jan 2020

Set Design Basis / RFI

Capture Plant Process Design

Water Management and Balance

Vendor Equipment Selection

General Arrangement

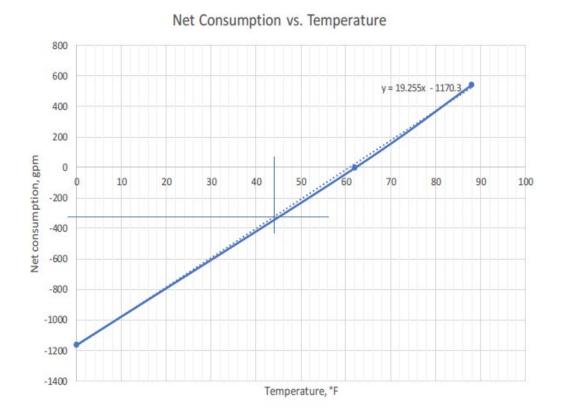
Construction Cost Estimate

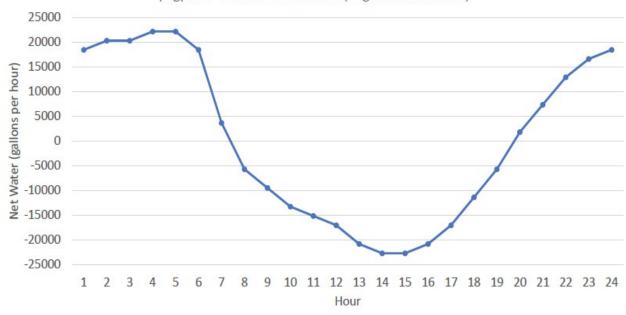
Permit Review

Cost Estimates and Reporting

March 2022

Flue Gas





Stack

Cooling Tower

A new water storage pond allows the capture plant to achieve water balance throughout the year

Jan 2020

Set Design Basis / RFI

Capture Plant Process Design

Water Management and Balance

Vendor Equipment Selection

General Arrangement

Construction Cost Estimate

Permit Review

Cost Estimates and Reporting

March 2022

Jan 2020

Set Design Basis / RFI

Capture Plant Process Design

Water Management and Balance

Vendor Equipment Selection

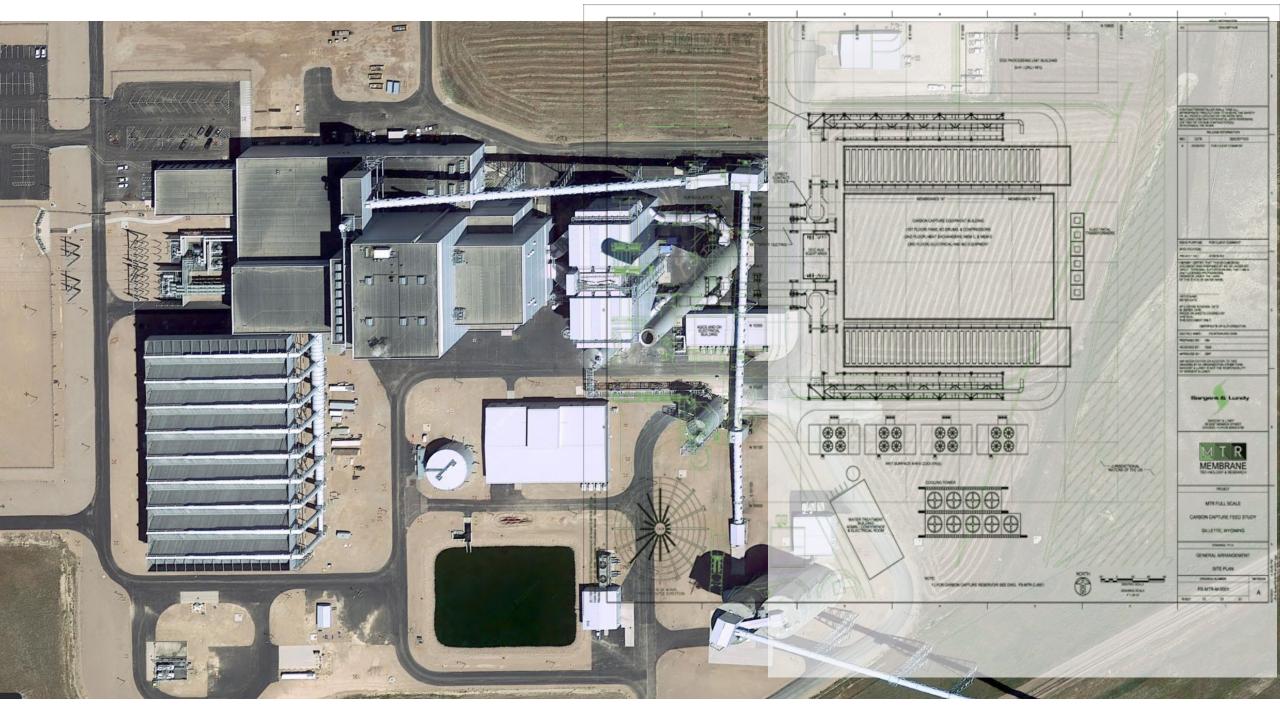
General Arrangement

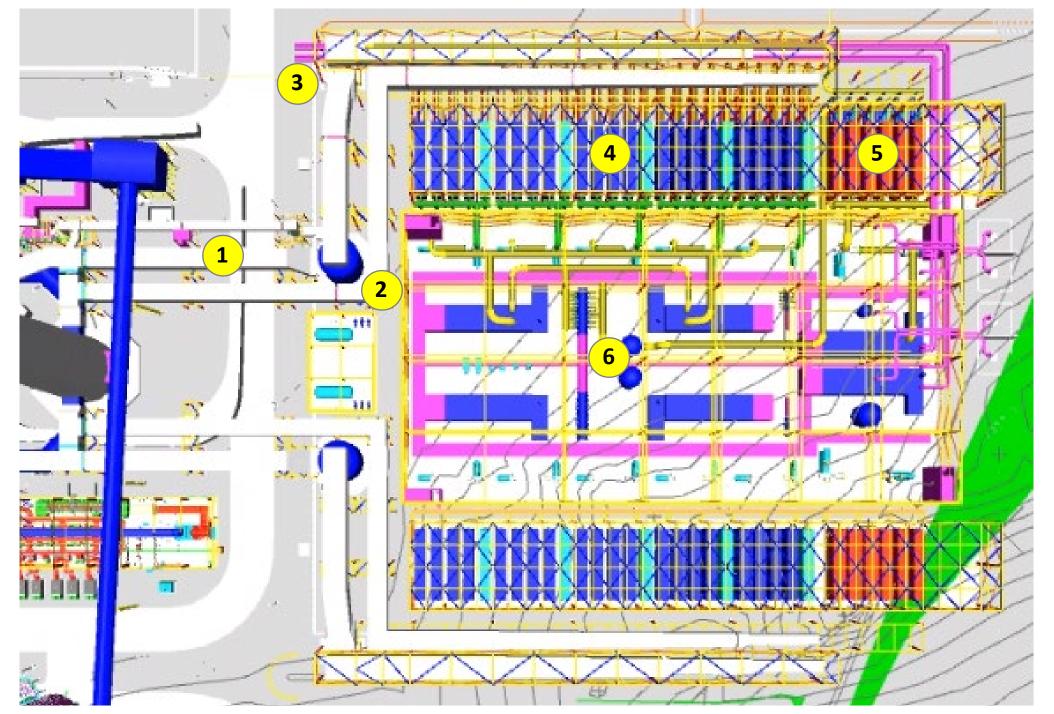
Construction Cost Estimate

Permit Review

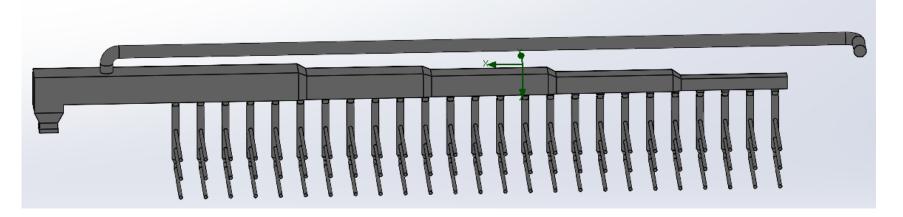
Cost Estimates and Reporting

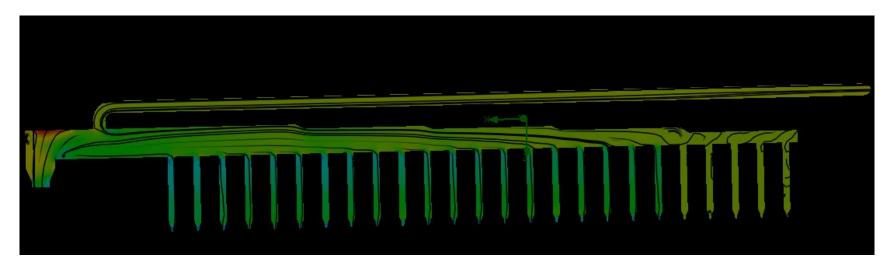
March 2022

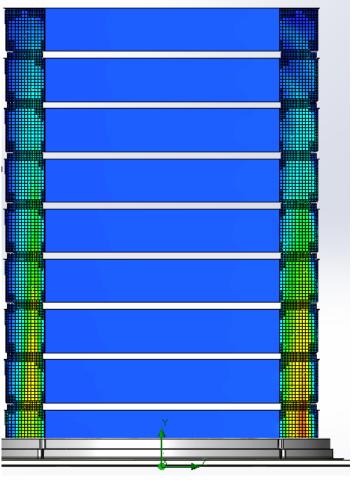

99



أأأأ






Gas Distribution Design and Flow Analysis

Flue Gas Distribution Duct and Manifolds

CFD Analysis of Gas Flows through Membrane Stacks

Jan 2020

Set Design Basis / RFI

Capture Plant Process Design

Water Management and Balance

Vendor Equipment Selection

General Arrangement

Construction Cost Estimate

Permit Review

Cost Estimates and Reporting

March 2022

Summary

- FEED study for the retrofit application of MTR's membrane process to the 420 MW_e Dry Fork Station (DFS), Gillette, WY
- Process design is complete, and all process details are defined
- A zero liquid discharge compliant cooling system and overall water management was developed
- Selected the majority of vendor specific process equipment
- Detailed layout and general arrangement of equipment are underway
- Remaining BOP and building design, layout, and equipment and construction cost estimating will occur by year's end

Project Team

MTR

- Richard Baker
- Alicia Breen
- Brice Freeman
- Pingjiao Hao
- Thomas Hofmann
- Tim Merkel
- Erik Westling

NETL

Carl Laird

Sargent & Lundy

- Christie Ainge
- Kelly Gandy
- Holly Hills
- Elizabeth LaMere
- Kevin Lauzze
- Ryan Miller
- Steve Nealon
- Dana Pierik
- Jim Robeson
- Mike Rosen
- Marion Teslik
- Alex Vincent

Trimeric

- Kevin Fisher
- Mike Marsh
- Ray McKaskle
- Anne Ryan

CMS

Will Morris

EPRI

- Andy Howell
- Joe Swisher

Basin Electric

- Nolan Bray
- Gavin McCollam
- Jim Sheldon
- Tom Stalcup
- Troy Tweeten

Acknowledgments

This material is based upon work supported by the Department of Energy under Award Number DE-FE0031846.

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Appendix

Milestone Number	Task/ Subtask No.	Milestone Description	Planned Completion	Actual Completion	Verification Method	Comments				
Budget Period 1 Milestones										
1	1	Kickoff meeting completed; Project Management Plan updated	12/31/19	11/1/19	Revised PMP	Milestone completed in Q1.				
2	2	Project design basis completed	7/31/20	7/31/20	Quarterly Report	Milestone completed on time.				
3	3	Preliminary process design complete	9/30/20	3/31/21	Quarterly Report	Was delayed due to COVID-related issues at the start of the project, and cooling system design requirements; completed this quarter.				
4	4	All engineering drawings (PFDs, P&IDs) completed; Hazop done	6/30/21	TBD	Quarterly Report	This milestone will be adjusted in the update PMP following NCTE				
5	6	Final report and FEED study documents completed	9/30/21	TBD	Quarterly Report	This milestone will be adjusted in the updated PMP following NCTE				

Role of Participants

DOE Office of Fossil Energy

NETL Federal Project Management, Carl Laird

Membrane Technology & Research, Inc.

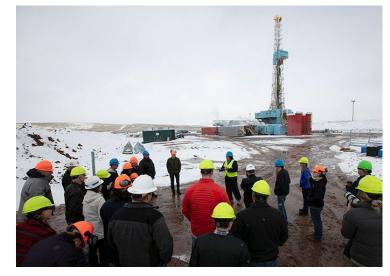
Co-Principal Investigators, Tim Merkel, Brice Freeman

The Project Team								
Basin Electric Host Site	MTR Technology Provider	Trimeric <i>Engineering</i>	S&L EPCM	CMS <i>Engineering</i>	EPRI <i>Engineering</i>			
Design inputInterconnection and operational issues	Process Design: • Overall process design • Membrane system		Engineering & Design: • FEED study lead • Permitting	• CO ₂ off-take requirements	Engineering Study:Water treatment and utilizationProcess Cooling			

Role of Participants

- MTR project lead and liaison with DOE; will coordinate project activities, prepare membrane system design, and report to DOE
- Basin Electric operator of the Dry Fork Station (DFS), host site for the proposed capture plant; will provide plant specific information needed for the FEED study
- S&L

 previously managed construction of the DFS, will lead the FEED study
- Trimeric will provide engineering services related to flue gas pretreatment and the CO₂ purification unit (CPU)
- EPRI will work with Basin to determine best use of water collected by the capture plant
- Carbon Management Strategies will provide engineering support related to CO₂ take off requirements that inform capture design


Project Objectives

- Complete FEED study of MTR capture process applied to the 400 MW_e Dry Fork Station
- Complete an environmental review (NEPA) of full-scale
 MTR membrane capture at Dry Fork Station
- Provide a path to commercialization (detailed costs and construction plan) for a full-scale membrane capture plant

Coordination with Wyoming CarbonSAFE

- MTR is coordinating our Full-Scale FEED project with the Wyoming CarbonSAFE project (FE-FE0031624).
- The University of Wyoming recently received their Phase III award, "Wyoming CarbonSAFE: Accelerating CCUS Commercialization and Deployment at Dry Fork Power Station and the Wyoming Integrated Test Center"
- Will finalize characterization and obtain a Class VI permit to construct a storage complex in Campbell County, Wyoming.
- The project utilizes Basin Electric's Dry Fork Station to source 2.2 million metric tons of CO₂ per year for storage at three nearby sites within the same storage complex.
- Results of a FEED study of CO₂ capture utilizing MTR's two-stage membrane will be integrated into this project.

Pilot Well adjacent to Dry Fork Station (source: Basin Electric)

