Design and costing of ION’s CO₂ capture plant retrofitted to a 700 MW coal-fired power plant

2021 NETL CO₂ Capture Technology Project Review Meeting
August 3, 2021

Project: Commercial Carbon Capture Design and Costing: Part 2 (C3DC2) - DE-FE0031840
Andy Awtry, Ph.D. – VP Engineering
ION Clean Energy, Boulder, CO, USA
ION’s CO₂ Capture Technology Development

Accelerated development path leveraging existing research facilities
ION Technology Overview

• Proprietary Solvent-based Technology
 – Liquid absorbent-based capture
 – Low aqueous
 – Worldwide Patents

• Established Engineering Process
 – Learnings from Boundary Dam
 – Learnings from Petra Nova

• Basis of Performance
 – Fast kinetics (on par or faster than MEA)
 – Working capacity (higher than MEA)
 – Low heat capacity (much lower than MEA)
 – < 1,090 Btu/lb CO₂ (2.5 MJ/kg CO₂)
ION Technology Overview

Value Added

• High Capture Efficiency
 – Up to 96% CO₂ Capture

• Design System for CAPEX/OPEX savings
 – Smaller absorber column(s) vs higher carrying capacity
 – Pumps/HEXs are smaller due to lower liquid flow rates

• Low regeneration energy requirement
 – Low parasitic load
 – Low steam demand – reduction in plant de-rate if integrated into the steam cycle

• Demonstrated lower corrosion rates than MEA

• Demonstrated lower total emission rates than MEA
Nebraska Public Power District

Host Site – Gerald Gentleman Station

- Located in Sutherland, Nebraska
- Largest generating station in Nebraska
- Two units with total capacity of 1,365 MW
 - Unit 1 – 1979 – 665 MW
 - Unit 2 – 1982 – 700 MW
- Burns Powder River Basin Coal
Objective: Retrofit a Carbon Capture System at a power station

- Nebraska Public Power District’s (NPPD) Gerald Gentleman Station (GGS)
- 300 MWe Slipstream for carbon capture
- Ownership model: NPPD owns and operates the capture island
- Design Basis: CO₂ product for enhanced oil recovery (not regulatory driven)

Class 3 (AACE) Cost Estimate

- Cost Estimate is -20% to +30%
- Completed about 20% of Engineering Effort

Completed 18mo Project in Q4 of 2019
Commercial Carbon Capture Design & Costing Study

<table>
<thead>
<tr>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slipstream</td>
<td>300 MWe</td>
</tr>
<tr>
<td>EPC Capital Cost</td>
<td>$438,000,000</td>
</tr>
<tr>
<td>Loan Term</td>
<td>20 years</td>
</tr>
<tr>
<td>Interest Rate</td>
<td>4.5%</td>
</tr>
<tr>
<td>Total OPEX</td>
<td>$28,200,000</td>
</tr>
<tr>
<td>Total Annual Cost</td>
<td>$61,800,000</td>
</tr>
<tr>
<td>Total Annual CO₂ Production CF</td>
<td>1,900,000 tonne/yr</td>
</tr>
<tr>
<td>Cost of CO₂ Capture</td>
<td>$32.50</td>
</tr>
</tbody>
</table>

Total Annual CO₂ Production CF: 1,900,000 tonne/yr

Cost of CO₂ Capture: $32.50/tonne
COMMERCIAL CARBON CAPTURE DESIGN & COSTING STUDY: PART 2

DE-FE0031840
Commercial Carbon Capture Design & Costing Study: Part 2
(C3DC2) DE-FE0031840

• Retrofit a Carbon Capture System at an existing power station
 – Nebraska Public Power District’s (NPPD) Gerald Gentleman Station (GGS)
 – 700 MWe carbon capture system (2x 350 MWe trains)
 – Ownership model: Capture System is 3rd Party Owned and Operated
 – Design Basis: CO₂ product for EOR (not regulatory driven)

• Class 2 (AACE) Capital Cost Estimate
 – Estimate Accuracy Range: -15% to +20%
 – Complete about 50-60% of Engineering Effort

• 18-month project; to be completed in Q1 of 2021

• $5.8M project budget
 – $4.6M DOE-NETL
 – $1.2M ION & Partners
C3DC2 Study
Project Team and Roles

ION Clean Energy
- Technology Developer
- Process Design and Project Management

Nebraska Public Power District
- Host Site (GGS)
- Power Generation Engineering, Operational and Financial Expertise

Sargent and Lundy
- Balance of Plant (BOP) Engineering
- Overall Cost Estimate Development
- Constructability Review
- Construction Cost Estimating

Koch Modular Process System
- Carbon Capture pilot experience and expertise
- Capture Process Oversight, Design and Costing

Siemens
- Compressor Vendor
ProTreat® Process Model

ION CO₂ Capture Process

Key features of ION process compared to ‘common’ MEA-designed plant

- Cold-Rich By-pass
- Optimized lean rich cross exchanger (LRXO) design
- Caustic addition to DCC to act as SOₓ Polishing Scrubber
- Compressor Selection

ProTreat output provides stream tables, key performance indices, and steam, cooling and electrical duties
System Design
700MWe CO₂ Capture Plant

• Capture System Design
 – 2x 50% trains for the Capture Island
 – 2x 50% on major pieces of equipment to assist in turndown and provide some risk mitigation
 – Designed for operation at full load, and track plant load to maximum turndown
 – Designed for 90% capture of CO₂; resulting in >95% capture at turndown

• BOP Design
 – Steam sourcing from GGS2 steam cycle
 – Cooling water from a hybrid system
Bioenergy w/ Carbon Capture & Sequestration (BECCS)
700MWe (4.3M TPA) CO₂ Capture Plant

• Overall cost evaluation for potential net zero and net negative emissions

• Engineering Design
 – Biofuel Sourcing
 • Corn Stover vs Eastern Red Cedar
 • Pellets vs Bales
 – Gasifier Design
 • Design for 10-15% coal offset
 • Evaluate boiler performance
 – Balance of Plant Design
 – Evaluation of capture performance on the existing CO₂ capture process design
Bioenergy w/ Carbon Capture & Sequestration (BECCS)

BECCS General Arrangement Drawing

- Corn Stover Pellets delivered by truck
- Gasifier converts pellets to syngas
- Boiler mods and resulting flue gas by B&W
Bioenergy w/ Carbon Capture & Sequestration (BECCS)

Flue Gas Comparison and CCS Performance

- Max Design is the Base Design Case, assuming full load of the power plant
- BECCS case replaces 10% of the coal with the syngas from the gasifier
 - 5.5% reduction in CO$_2$ flow to the capture island
 - Increase in capture efficiency to 93.3% (holding steam consumption constant)
 - 1.6% reduction in CO$_2$ product flow
 - Reduced CO$_2$ by 98% relative to coal emissions
 - CO$_2$ reduction >100% with 10% increase in packing and 23% more plates in LRXC

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Max Design Value</th>
<th>BECCS (Corn Stover)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCC Inlet Conditions (1x50% train)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>°F</td>
<td>145</td>
<td>144</td>
</tr>
<tr>
<td>Pressure</td>
<td>psia</td>
<td>13.75</td>
<td>13.75</td>
</tr>
<tr>
<td>O$_2$ Concentration</td>
<td>vol %</td>
<td>4.34</td>
<td>5.43</td>
</tr>
<tr>
<td>CO$_2$ Rate</td>
<td>vol %</td>
<td>11.5</td>
<td>10.78</td>
</tr>
<tr>
<td>Flue Gas Flowrate</td>
<td>acfm</td>
<td>1,107,000</td>
<td>1,114,000</td>
</tr>
<tr>
<td></td>
<td>lb/hr</td>
<td>3,973,000</td>
<td>4,003,000</td>
</tr>
<tr>
<td>CO$_2$ Capture Performance (1x50% train)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capture Efficiency</td>
<td>%</td>
<td>90</td>
<td>93</td>
</tr>
<tr>
<td>CO$_2$ Captured</td>
<td>lb/hr</td>
<td>638,000</td>
<td>628,000</td>
</tr>
<tr>
<td>L/G</td>
<td>lb/lb</td>
<td>1.93</td>
<td>1.81</td>
</tr>
<tr>
<td>Electrical Duty</td>
<td>kW</td>
<td>31,900</td>
<td>31,700</td>
</tr>
<tr>
<td>SRD</td>
<td>MJ/kg CO$_2$</td>
<td>2.51</td>
<td>2.55</td>
</tr>
<tr>
<td>Steam Consumption</td>
<td>lb/hr</td>
<td>765,100</td>
<td>765,100</td>
</tr>
</tbody>
</table>
Cost of CO₂ Capture

Costing Basis

- Designed to produce a reliable CO₂ product stream for EOR/Sequestration; not regulatory driven CO₂ capture
- Used historical data for the unit to model cumulative captured CO₂ based on observed power plant load factor, capture plant uptime, and ambient conditions
- Calculated the cost with and without the additional flue gas pre-conditioning to isolate the cost of CO₂ capture for comparison to sites that may already have this equipment
- BECCS evaluation was performed as a sensitivity study and its incremental capital and operating expenses are separate
- 3rd Party Ownership impact on overall costing being further investigated

<table>
<thead>
<tr>
<th></th>
<th>C3DC1 Results (300 MWe)</th>
<th>C3DC2 Results (700 MWe)</th>
<th>Cooling System Selection Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total CAPEX</td>
<td>$437,500,000</td>
<td>$1,172,900,000</td>
<td>-$140,300,000</td>
</tr>
<tr>
<td>Annualized CAPEX</td>
<td>$33,600,000</td>
<td>$90,200,000</td>
<td>-$10,800,000</td>
</tr>
<tr>
<td>OPEX</td>
<td>$28,200,000</td>
<td>$60,700,000</td>
<td>-$4,100,000</td>
</tr>
<tr>
<td>Annual Cost</td>
<td>$61,800,000</td>
<td>$150,900,000</td>
<td>-$14,900,000</td>
</tr>
<tr>
<td>CO₂ Product</td>
<td>1,900,000</td>
<td>4,310,000</td>
<td>4,310,000</td>
</tr>
<tr>
<td>Cost of Capture</td>
<td>$32.53</td>
<td>$35.01</td>
<td>-$3.46</td>
</tr>
</tbody>
</table>
Acknowledgement and Disclaimer

Acknowledgement

This material is based upon work supported by the Department of Energy National Energy Technology Laboratory under cooperative award number DE-FE0031840.

Disclaimer

“This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.”
Thanks
C3DC2 Team:
ION, NPPD, S&L, KMPS, Siemens

BECCS TEAM:
Trestle Energy, Frontline BioEnergy, Babcock & Wilcox

Department of Energy:
<table>
<thead>
<tr>
<th>#</th>
<th>Task</th>
<th>Milestone Title / Description</th>
<th>Completion Date</th>
<th>Verification Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>1.0</td>
<td>DOE Kickoff Meeting</td>
<td>12/5/2019</td>
<td>Meeting Held</td>
</tr>
<tr>
<td>M2</td>
<td>1.0</td>
<td>Updated PMP</td>
<td>11/7/2019</td>
<td>PMP Transmitted to DOE</td>
</tr>
<tr>
<td>M3</td>
<td>2.0</td>
<td>Basis of Design for Project Finalized</td>
<td>1/10/2019</td>
<td>Meeting Held w/ Results Project SharePoint Site; Completion Memo to DOE</td>
</tr>
<tr>
<td>M4</td>
<td>3.0</td>
<td>Preliminary Design Review Complete</td>
<td>3/30/2020</td>
<td>Meeting Held w/ Results Project SharePoint Site; Completion Memo to DOE</td>
</tr>
<tr>
<td>M5</td>
<td>4.0</td>
<td>Critical Design Review Complete</td>
<td>9/30/2020</td>
<td>Meeting Held w/ Results Project SharePoint Site; Completion Memo to DOE</td>
</tr>
<tr>
<td>M6</td>
<td>5.4</td>
<td>HAZOP Complete</td>
<td>11/24/2020</td>
<td>HAZOP Report Completed</td>
</tr>
<tr>
<td>M7</td>
<td>6.0</td>
<td>Overall Cost Estimate and Cost of Capture</td>
<td>1/12/2021</td>
<td>Meeting Held w/ Results Project SharePoint Site; Completion Memo to DOE</td>
</tr>
<tr>
<td>M10</td>
<td>4.2</td>
<td>BioMass Co-firing BOP Design</td>
<td>4/1/2021</td>
<td>Meeting Held w/ Results Project SharePoint Site; Completion Memo to DOE</td>
</tr>
<tr>
<td>M8</td>
<td>7.0</td>
<td>Front-End Engineering Design (FEED) Report</td>
<td>9/1/2021</td>
<td>Report Delivered to DOE/NETL</td>
</tr>
<tr>
<td>M9</td>
<td>7.0</td>
<td>Final DOE Report & Presentation</td>
<td>9/30/2021</td>
<td>Report Delivered to DOE/NETL</td>
</tr>
</tbody>
</table>
Commercial Carbon Capture Design & Costing Study: Part 2

(C3DC2) DE-FE0031840

<table>
<thead>
<tr>
<th>Task Name</th>
<th>Duration</th>
<th>Start</th>
<th>Finish</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. C3DC2 Project - FEED Study</td>
<td>526 days</td>
<td>Mon 9/2/19</td>
<td>Thu 9/30/21</td>
</tr>
<tr>
<td>2. 1.0 Project Management and Planning</td>
<td>460 days</td>
<td>Mon 9/2/19</td>
<td>Wed 6/30/21</td>
</tr>
<tr>
<td>20. 2.0 Overall Project Design Basis</td>
<td>361 days</td>
<td>Thu 10/31/19</td>
<td>Tue 4/13/21</td>
</tr>
<tr>
<td>51. 3.0 Process Design - CO2 Capture Island Design</td>
<td>290 days</td>
<td>Mon 9/30/19</td>
<td>Wed 11/25/20</td>
</tr>
<tr>
<td>52. Preliminary Design - CO2 Capture Island</td>
<td>254 days</td>
<td>Mon 9/30/19</td>
<td>Tue 10/6/20</td>
</tr>
<tr>
<td>103. M4: Preliminary Design Review</td>
<td>0 days</td>
<td>Fri 4/24/20</td>
<td>Fri 4/24/20</td>
</tr>
<tr>
<td>104. Detailed Design - CO2 Capture Island</td>
<td>159 days</td>
<td>Thu 4/16/20</td>
<td>Wed 11/25/20</td>
</tr>
<tr>
<td>136. 4.0 Engineering & Design - Integration and BOP</td>
<td>340 days</td>
<td>Fri 12/20/19</td>
<td>Fri 4/30/21</td>
</tr>
<tr>
<td>137. Detailed Design - Integration and BOP</td>
<td>340 days</td>
<td>Fri 12/20/19</td>
<td>Fri 4/30/21</td>
</tr>
<tr>
<td>384. BECCS - Biomass Co-firing</td>
<td>121 days</td>
<td>Thu 11/5/20</td>
<td>Thu 4/29/21</td>
</tr>
<tr>
<td>430. 5.0 Studies and Investigation</td>
<td>412 days</td>
<td>Tue 12/3/19</td>
<td>Fri 7/23/21</td>
</tr>
<tr>
<td>540. 6.0 Cost Estimate</td>
<td>199 days</td>
<td>Tue 7/21/20</td>
<td>Fri 4/30/21</td>
</tr>
<tr>
<td>574. 7.0 Reporting</td>
<td>158 days</td>
<td>Tue 2/23/21</td>
<td>Thu 9/30/21</td>
</tr>
<tr>
<td>575. M8: Front-End Engineering Design (FEED) Report</td>
<td>137 days</td>
<td>Tue 2/23/21</td>
<td>Wed 9/1/21</td>
</tr>
<tr>
<td>583. M9: Final DOE Project Report</td>
<td>71 days</td>
<td>Thu 6/24/21</td>
<td>Thu 9/30/21</td>
</tr>
<tr>
<td>589. BECCS Reporting</td>
<td>70 days</td>
<td>Thu 4/1/21</td>
<td>Wed 7/7/21</td>
</tr>
</tbody>
</table>