Substitute Natural Gas (SNG)
Scrubbing the Carbon in Coal and Petcoke

Gasification Technologies Conference
October 2, 2006
Washington D.C.

Cliff Keeler
Senior Project Director, Gasification
clifton.g.keeler@conocophillips.com
Outline

1. SNG Drivers
2. Plant Design and Study Basis
3. Results
Domestic Natural Gas Production Falling Short of Demand

The US is short on Natural Gas

Performing today. Preparing for tomorrow.

Delineation of U.S. Coal Resources and Reserves
(In Billions of Tons)

250 year supply at current consumption

US is long on Coal

Source: EIA Coal Reserves Data, 1997
“Illinois coal resources hold more BTUs than all of Saudi Arabia's and Kuwait's oil reserves combined.” - ISGS
US Drivers for Substitute Natural Gas

✓ USA is short on natural gas and very long on coal

✓ Gasification technology can augment North American natural gas supplies and LNG imports

✓ Adds value to US coal reserves

✓ Increased energy diversity

✓ National energy security implications

✓ Method to reduce carbon penalty associated with coal
SNG Process Scrubs Carbon from Coal

Performing today. Preparing for tomorrow.

Carbon capture for enhanced oil recovery
- Reasonable proximity to oil fields required
- Improves project economics
- Increases life of existing oil fields
- Scrubs approximately 65% of the carbon from the feedstock
- Increases environmental attractiveness

Carbon Balance

Coal or Petcoke Feed
100 C Units

Gasifier + Carbon Scrubber (Rectisol®)

Carbon in SNG
34 Carbon Units

Slag+Aux Boiler
1 Carbon Unit

CO₂ for EOR
65 Carbon Units

65% of carbon in feedstock can be captured with SNG
E-Gas™ Gasification & SNG Process

- Coal
- Slurry
- Milling, Heating & Feeding
- Gasification
- High Temp. Heat Recovery
- Particulate Removal
- Gasification Technology Battery Limit (TBL)
- Char
- Slag Handling
- Steam
- BFW
- Air Separation Unit
- Nitrogen
- Oxygen
- Air
- Rectisol® & Methanation
- Methanation & Compression
- Product SNG
- Rectisol® AGR
- Sweet Syngas
- Acid Gas
- Sulfur Product
- Sulfur Recovery Unit
- Cool Sour Syngas
- LTHR, Chloride Scrubbing, Sour Shift & Hg removal
- Sour Water
- Discharge Water
- Water Treatment
- Recycle Slurry Water
- Quench Water
- Slag Slurry
- Slag Product
- Power Block and BoP
- Power Block and BoP
SNG Design Basis

Fixed gasifier size for all cases
3 x 50% gasification train plant
12 hours of LOX storage
High reliability
High purity oxygen (99.5%)
CO shift
Hg removal
Rectisol® acid gas recovery
Claus sulfur recovery unit
Commercial methanation
SNG delivery pressure 900 psi
CO₂ compression to 2000 psi

<table>
<thead>
<tr>
<th>Case</th>
<th>Feedstock</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Petcoke</td>
<td>Gulf Coast</td>
</tr>
<tr>
<td>2</td>
<td>IL#6 Coal</td>
<td>Midwest</td>
</tr>
<tr>
<td>3</td>
<td>PRB</td>
<td>Wyoming</td>
</tr>
</tbody>
</table>

CO₂ capture option evaluated
Feedstock Parameters

<table>
<thead>
<tr>
<th>Feedstock</th>
<th>Petcoke</th>
<th>IL #6</th>
<th>PRB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Gulf Coast</td>
<td>Midwest Minemouth</td>
<td>Wyoming Minemouth</td>
</tr>
<tr>
<td>HHV, Btu/lb (As Rec’d)</td>
<td>13,699</td>
<td>11,053</td>
<td>8,800</td>
</tr>
<tr>
<td>Composition:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon (dry basis), wt%</td>
<td>87.3</td>
<td>70.1</td>
<td>70.2</td>
</tr>
<tr>
<td>Hydrogen (dry basis), wt%</td>
<td>3.7</td>
<td>4.7</td>
<td>5.3</td>
</tr>
<tr>
<td>Sulfur (dry basis), wt%</td>
<td>6.3</td>
<td>2.7</td>
<td>1.2</td>
</tr>
<tr>
<td>Nitrogen (dry basis), wt%</td>
<td>1.3</td>
<td>0.3</td>
<td>1.1</td>
</tr>
<tr>
<td>Ash (As Rec’d), wt%</td>
<td>0.63</td>
<td>11.08</td>
<td>6.8</td>
</tr>
<tr>
<td>Moisture (As Rec’d), wt%</td>
<td>9.9</td>
<td>13.7</td>
<td>26.9</td>
</tr>
</tbody>
</table>
Expected Performance Results

<table>
<thead>
<tr>
<th></th>
<th>Pet coke</th>
<th>IL#6</th>
<th>PRB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feedrate (TPD)</td>
<td>6,300</td>
<td>7,000</td>
<td>8,300</td>
</tr>
<tr>
<td>Gross Power</td>
<td>160</td>
<td>155</td>
<td>165</td>
</tr>
<tr>
<td>Net Power* (MW)</td>
<td>20</td>
<td>35</td>
<td>30</td>
</tr>
<tr>
<td>SNG Product (MMSCFD)</td>
<td>115</td>
<td>100</td>
<td>90</td>
</tr>
<tr>
<td>Product Yield (MCF/ton)</td>
<td>18</td>
<td>14</td>
<td>11</td>
</tr>
<tr>
<td>CO₂ product (MMSCFD)</td>
<td>190</td>
<td>160</td>
<td>170</td>
</tr>
</tbody>
</table>

* Net power reduced by approximately 15MW in CO₂ capture case
Performing today. Preparing for tomorrow.

Capital Cost Comparison

- CO₂ capture adds ~45MM to EPC cost
- Gulf Coast location results in ~10% CapX advantage
Capital Cost Breakdown by Major Process Area

Gasification is less than $\frac{1}{3}$rd of total capital cost
Financial and Economic Assumptions in Base Case

Performing today. Preparing for tomorrow.

<table>
<thead>
<tr>
<th>Key Assumptions</th>
<th>Value</th>
<th>Other Factors Included</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNG base price ($/mmbtu)</td>
<td>$6.00</td>
<td>• O&M</td>
</tr>
<tr>
<td>Interest on debt</td>
<td>6.0%</td>
<td>• Owners Cost</td>
</tr>
<tr>
<td>Debt/Equity</td>
<td>70/30</td>
<td>• Financing Fees</td>
</tr>
<tr>
<td>Feedstock ($/ton)</td>
<td>$28</td>
<td>• Working Capital</td>
</tr>
<tr>
<td>CO₂ Product Price ($/ton)</td>
<td>$20</td>
<td>• Capital Spares</td>
</tr>
<tr>
<td>Project Life</td>
<td>20 years</td>
<td>• Escalation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Insurance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Taxes</td>
</tr>
</tbody>
</table>
Cost of Gas

Performing today. Preparing for tomorrow.

CO₂ sales reduces SNG price by ~$0.20/MMBtu

Analysis based on 15% leveraged ROI
Sensitivity Analysis – Impact to ROI

Basis: Ill#6 without CO₂ Capture

- SNG Price
 ($5 / $8)

- Capital Cost
 (+25% / -25%)

- Feedstock Cost
 (+25% / -25%)

- Interest Rate on Debt
 (+25% / -25%)

- O&M Cost
 (+25% / -25%)

CO₂ capture improves
ROI ~1.5%
Enablers for Successful Projects

- Favorable forward gas price
- Location, location, location
 - Construction cost (labor, rail and deep water access)
 - Feedstock pricing
 - Market for CO₂
 - Other product markets (Liquid air products, sulfuric acid, etc.)
- Innovative financing to minimize interest payments
- Governmental supports (both state and federal)
- Reduction in capital cost – all technologies
 - ASU, Rectisol®, methanation and gasification
Summary

- SNG integrates proven technologies
- SNG has favorable economics in certain applications
- Scrubbing carbon from coal – puts coal on an comparable footing with natural gas
- Deployment of SNG augments North American supplies
 - Broadens energy diversity
 - Reduces foreign dependence on natural gas
 - Significant deployment requires governmental supports
E-Gas Technology for Gasification

“Common Sense For Energy And The Environment”