

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

DOE Hydrogen Shot Summit and Request for Information Summary

Dr. Sunita Satyapal, Hydrogen and Fuel Cell Technologies Office Director and Hydrogen Program Coordinator, U.S. Department of Energy

September 27, 2021

The U.S. DOE Hydrogen Program

The Energy Policy Act (2005) Title VIII and Energy Policy Act of 2020 provide key authorization, coordinated across DOE Offices

Hydrogen is one part of a broad portfolio of activities

Nonprofits

Priorities

- 1. Low cost, clean hydrogen
- 2. Low cost, efficient, safe hydrogen delivery and storage
- 3. Enable end use applications at scale for impact

Workforce development, safety, codes, standards, and Environmental Justice priorities

Comprehensive Strategy Across the Hydrogen Value Chain

	NEAR-TERM	L L	LONGER-TERM	
Production	Gasification of coal, biomass, and waste with carbon capture, utilization, and storage Advanced fossil and biomass reforming/conversion Advanced biological/microbial conversion Electrolysis (low-temperature, high-temperature) Advanced thermo/photoelectro-chemical		crobial conversion photoelectro-chemical H ₂ O splitting	
Delivery	Distribution from on-site produc Tube trailers (gaseous H ₂) Cryogenic trucks (liquid H ₂)	oduction Widespread pipeline transmission and distribution Chemical H ₂ carriers		
Storage	Pressurized tanks (gaseous H ₂) Cryogenic vessels (liquid H ₂)	Geologic H ₂ storage (e.g., caverns, depleted Cryo-compressed Chemical H ₂ carriers	d oil/gas reservoirs) Materials-based H ₂ storage	
Conversion	Turbine combustion Fuel cells	Advanced combustion Next generation fuel cells	Fuel cell/combustion hybrids Reversible fuel cells	
Applications	Fuel refining Space applications Portable power	Blending in natural gas pipelinesDistributed stationary powerTransportationDistributed CHPIndustrial and chemical processesDefense, security, and logistics applications	Utility systems Integrated energy systems	

3

Hydrogen

Hydrogen Energy Earthshot

"Hydrogen Shot"

"111" \$1 for 1 kg clean hydrogen in 1 decade

> Launched June 7, 2021 Summit Aug 31-Sept 1, 2021

DOE Hydrogen Shot Summit

Convened thousands of stakeholders

4,900+ total registrants 3,200+ participants in **Plenary**

Participants from across the US and around the world

48 states + DC

33 countries + USA

Hydrogen Shot Summit Stakeholder Feedback

Responses to: Which are the greatest barriers currently preventing public acceptance of wide-spread hydrogen in the US?

Stakeholder Engagement, Production and End-Use Collocation and Environmental Justice to Drive Activities

Renewables

Red: Regions where projected industrial & transportation demand exceeds local supply.

Regional and national analyses planned – stay tuned to Hydrogen Shot and www.hydrogen.energy.gov

Source:: Arjona, et al, DOE HFTO

Natural Gas (SMR)

DOE Request of Information covered key themes:

- Production, Resources, Infrastructure
- End Users, Cost, Value
 Proposition
- Co-location potential
- Emissions Reduction Potential
- DEI, Jobs, EJ
- Science & Innovation Needs and Challenges

DEI: Diversity, Equity and Inclusion EJ: Environmental Justice

Potential Locations for Hydrogen Demonstrations

Please select the region that you believe is most ready for a large-scale hydrogen demonstration.

How Can We Succeed?

What are your top 3 priorities for Hydrogen Shot to be successful?

Increase R&D to reduce cost

Policies to increase scale and cost parity 18%

Hydrogen

earthsho

DEPARTMENT OF ENERGY

Reducing siting/permitting barriers 5%

Focus on scale and deployments 20%

Increasing supply chain 6%

Address hydrogen safety

5%

Develop partnerships 14%

Delivery and storage infrastructure

11%

Identifying DEI Opportunities

earthshots

Hydrogen

Please rank these end use applications by the potential impact to underserved communities.

RFI findings: Regional clusters and geographic factors

Great Lakes Central U.S. **Pacific Northwest** Major national corridors • Nuclear power • 60,000+ jobs Ample wind Port communities Geological storage Tribal communities Railway transport **New England** Extensive renewables Nuclear resources . 8 jobs per 1M invested in H_2 >630,000 tonnes/yr Offshore wind CO₂ reduction Fishingcommunities Backup power and winter heating California ~120K tons CO₂/year reduction Diverse populations Appalachia Extensive infrastructure Emissions regulations Retiring fossil plants 40,000+ jobs . Mining, refining transferable skills Carbon capture and sequestration . 70,000 tons/yr H_2 production Southwest Tribal and Hispanic communities **Gulf Coast** Underutilized solar Existing infrastructure Nuclear power ٠ Alaska and Hawaii Up to 2B tonnes/yr emission Multiple opportunity zones ٠ reduction potential *Renewable resources* Extensive renewables – geothermal, solar, ocean • • 1,000s of jobs ٠ Backup power Chemical industry Isolated communities ٠ earthshots Hydrogen Hydrogen Shot Summit Source: Wieliczko, Harting, et al, DOE HFTO 86.000 tonnes/vr emission reduction

11

Appalachia Regional Cluster Responses

Regional resources for production and infrastructure

- Overlap with Great Lakes region, especially Western OH
- Primarily fossil resources with CCS, with future transition to renewables
- Access to significant NG and saline storage of CCS
- Salt, limestone, and sandstone formations for potential CCS or H₂ storage throughout

Emissions Reduction Potential

- 0.9 MT CO₂/year with NG reforming + 1-4 MT with additional CCS in a single project
- Decarbonization of current processes and possible negative emissions

earthshots

Hydrogen

End Users, Cost, Value Proposition

- H₂ for power generation, industry, backup power
- Steel, cement, and chemical industries; decarbonizing refining facilities
- Need for policy incentives to address cost premium versus traditional fossil

DEI, Jobs, EJ

- Many distressed communities based on unemployment rates, per capita market income, and poverty rates.
- Coal industry employment in that period has declined 54% in 15 years
- High dependence on mining as a portion of overall economic activity, e.g., one mine closure lost 2000 jobs

Co-location Potential

- Nuclear plants near transportation arteries, warehouses, and distribution facilities
- Wastewater treatment, ammonia production
- Environmental, architectural, archaeological studies completed; active work site for powerplant and other facility developments

Will We Succeed?

Not Confident at All

earthshots

Hydrogen

Very Confident

We gratefully acknowledge the RFI Team

Karen Harting

Zachary Taie

Martin Sulic

Asha-Dee Celestine

Kendall Parker

Marika Wieliczko

Mariya Koleva

Cassie Osvatics

Vanessa Arjona

Kim Cierpik-Gold

John Huston and Warren Williams

Additional Information

Example: Deep Dive on Fossil + CCS Responses

- A. How many responses involved fossil resources (coal, NG) 92 of 195
- B. How many involve any type of gasification or high temperature thermal conversion (any fuel) 59 of 195
- C. Provide a breakdown of interest by region See Summary in Slide
- D. Identify any trends in what is suggested for R&D needs; any specific technology areas?
 - Improving the Reforming Process
 - More research on possible Hydrogen storage (both Geologic & On-Site)
 - More research on CCS. CCUS, and Cryogenic Carbon Capture (CCC) to make more economic
- E. How many showed interest in Geologic Hydrogen Storage or CCUS? 53 of 195

Deep Dive: Responses on Specific Qs

A total of 92 out of 195 were found to have interest in categories below:

- A. How many responses involved fossil fuel (coal, NG)
- B. How many involve any type of gasification or high temperature thermal conversion (any fuel)
- C. Provide a breakdown of interest by region (related to fossil, large storage, infrastructure)
- D. Identify any trends in what is suggested for R&D needs; any specific technology areas?
- E. Any discussion of Geologic Hydrogen Storage or CCUS?

Hydrogen

earthshots

DEPARTMENT OF ENERGY

Responses related to storage, infrastructure, fossil resources by region

Region

Examples of Popular Terms used by Respondents

earthshots

Hydrogen

Examples of Popular Terms using "Hydrogen" in Response

Source Huston, Williams, et al, DOE FECM 20

Thank you

Dr. Sunita Satyapal Director, Hydrogen and Fuel Cell Technologies Office Coordinator, DOE Hydrogen Program <u>Sunita.Satyapal@ee.doe.gov</u> U.S. Department of Energy

www.energy.gov/fuelcells www.hydrogen.energy.gov

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

HYDROGEN AND FUEL CELL TECHNOLOGIES OFFICE