Enabling an Accelerated and Affordable Clean Hydrogen Future - Fossil Energy Sector's Role Panel Discussion State/Utility Perspective on Fossil Energy Hydrogen Challenges

September 27, 2022

Who We Are

ELECTRIC UTILITIES & INFRASTRUCTURE

GAS UTILITIES & INFRASTRUCTURE

COMMERCIAL RENEWABLES

- Operating in six jurisdictions, serving 7.9 million retail customers
- Customer rates below the national average in all customer classes and all service areas for the seventh consecutive year

- Five state LDCs serving 1.6 million customers
- Significant investments in midstream natural gas pipeline and storage facilities
- Invested ~\$5 billion over past 10 years
- Approximately 4 GWs of wind and solar in operation

2020 Climate Report Net-Zero Scenario Analysis

- We analyzed an illustrative pathway that achieves our netzero goal by 2050
- To achieve net zero, we will:
 - ✓ Continue to retire coal
 - ✓ Continue to utilize lower-emitting natural gas
 - ✓ Add significant amounts of renewables and storage
 - ✓ Continue to operate our existing nuclear fleet
 - Adopt advancements in demand-side management and energy efficiency
 - Need new zero-emitting, load-following resources (ZELFRs) like advanced nuclear; carbon capture, utilization and storage; zero-carbon fuels (hydrogen, etc.); and long duration energy storage starting as early as 2035

We need ZELFRs to be developed and policy and stakeholder support for our transition as we move down this exciting path

Our Advanced Clean Energy Technology Priorities

		Advanced Nuclear		Hydrogen		Long Duration Energy Storage	U	Carbon Capture, tilization and Storage
Current Activity (Selected Examples)	✓ ✓	Partnership with TerraPower and GE on Natrium design Active involvement in developers' advisory boards and other initiatives	✓ ✓ ✓	Siemens/Clemson/DOE techno-economic study – evaluating pilots at Clemson & elsewhere Supporting OEM development of H ₂ capable resources Energy Futures Initiative Carolinas green hydrogen hub study	 ✓ 	Multiple pilots of advanced battery chemistries (e.g. metal- air, flow batteries) Partnership with Malta to study repowering coal sites with thermal storage	✓ ✓	Completed engineering and economic studies at multiple sites (e.g. Edwardsport, East Bend Buck) Monitoring opportunities across our system
Key Requirements for Commercial Viability		NRC regulatory approval (technology and site) Acceptable cost and deployment timeline		Access to sufficient renewable energy, pipeline capabilities and water (green hydrogen) Improved cost competitiveness (e.g. electrolyzer)		Cost reduction to enable storage for days, weeks or seasons Grid scale demonstration		Cost reduction across value chain Access to geologic storage and/or CO_2 transportation infrastructure
Expected Deployment		~2035		~2035		~2025		~2030

Evaluating multiple use cases and production pathways

- Decarbonized hydrogen via electrolysis or carbon capture
- Transitioning and future-proofing natural gas infrastructure

Industry & Stakeholder Collaboration

- Anchor sponsor of EPRI and GTI's Low Carbon Resources Initiative
- Partnering with the Energy Futures Initiative to study a green hydrogen hub in the Carolinas

H₂Orange Techno-Commercial Analysis

Design studies for production, storage and co-firing of hydrogen at Duke Energy's combined heat and power plant that serves the university campus

• Cost –

- > Can Blue / Turquois hydrogen be competitive.
 - With natural gas as a fuel \$1/kg \$7.50/mmBTU
 - With natural gas fired generation with CCS
 - Compared to green hydrogen (electrolysis)

Supply

> Will the supply meet the demand

Market Value

> If limited supply will high market value dominate

Conversion Location

> Close to natural gas sources or close to point of use.

Transportation

H2 capability of existing pipelines – Blends and volume limits

• CO2

> Ability to and risk of CO2 sequestration

Storage

- Geology with limited storage potential
- Longevity
 - Public and Policy positions

80 MSCF/d SMR

It would require ~8x this systems output, to supply a single 1,200MW CC

