

Low-C Hydrogen in a net-zero economy: Emissions, Arithmetic, Models, and Policy

Dr. S. Julio Friedmann, Senior Research Scholar Center on Global Energy Policy, Columbia Univ. Sept 27, 2021

Do not distribute – OUO – work in progress

H₂ is Hot

H₂ Economy Today

Hydrogen, the most abundant element on Earth, is a powerful clean energy carrier when used in a fuel cell — highly efficient and flexible, emitting only electricity, heat and water.

Key Trends in the Clean Energy Industry

In this study, we explore the potential for a hydrogen-powered future by looking at the

World's Largest Green Hydrogen Project in Saudi Arabia

海外からの水素大量輸入に有望 onia is expected to be an energy carrier ble for mass transport of hydrogen.

アンモニア

Ammonia

DOE: Hydrogen Earthshot

Hard to separate hype, help and opportunity

www.energypolicy.c

Hydrogen: the Swiss Army knife of deep decarbonization

Heavy Industry

- Replacing/decarbonizing current hydrogen production (70 Mt/y + 477 Mt/y CO₂)
- Industrial heat (cement, iron & steel, chemicals, refining, glass, ceramics, paper)

Transportation Sector

- Direct use as a fuel (heavy duty trucking; port operation)
- Feedstock to synthetic fuels (ammonia, synthetic jet fuel & methanol)

Power Sector

- Alternative power storage (like a long-duration battery) with stationary fuel cells
- Get value from power congestion & curtailment

Multi-sectoral Applications

- Near-term and long-term replacement for natural gas (heat and power)
- Feedstock to a circular carbon economy (fuels, plastics, chemicals)
- CO₂ removal (biomass+CCS to hydrogen; energy for CO₂ removal systems)

Hydrogen is a big part of a net-zero economy Key applications: Industry, shipping, aviation, trucks, heat Mix of blue & green

Global H2 production by fuel & use by sector

IEA, Net-zero 2050 (2021)

www.energypolicy.co

5 **11**

Fair question: What's the true footprint of H₂ production & use?

Clean H₂ production and utilisation must increase from ~1Mtpa to hundreds of Mtpa by 2050.

Key challenges

Cost

- **Green**: \$3-8/kg (55% electricity, 30% electrolyzer, 15% BOP)
- **Blue**: \$1.2-1.8/kg (for D, price of gas & decarb fraction)

Technology limits

- Manufacturing: bespoke production (China, Germany, Korea, Norway, Japan trying to change)
- Pipeline tolerances: 7-20% in most existing natgas pipeline networks
- Safety: Invisible sensors & controls, home safety, etc.

Infrastructure (EWIIW)

- **Green**: Massive build of transmission & zero-C electricity supply (26,000 TWh = 530 Mtpa)
- Blue: CO₂ pipelines, fueling infrastructure, pore volume access; upstream CH₄; acceptance

* For \$1000/kW electrolyzers

Friedmann et al., 2019

Today, blue beats green most everywhere

Tomorrow (2030*), green looks more promising

* Big grain of salt on this date 2035-2040 more likely for same outcome

Sensitive to learning rates for renewables, electrolyzers

Infrastructure limits & deployment rates

Eventually (2050), green should beat blue most markets

Key challenges

Cost

- Green: \$3-8/kg (55% electricity, 30% electrolyzer, 15% BOP)
- **Blue**: \$1.2-1.8/kg (for D, price of gas & decarb fraction)

Technology limits

- Manufacturing: bespoke production (China, Germany, Korea, Norway, Japan trying to change)
- Pipeline tolerances: 7-20% in most existing natgas pipeline networks
- Safety: Invisible sensors & controls, home safety, etc.

Infrastructure (EWIIW)

- **Green**: Massive build of transmission & zero-C electricity supply (26,000 TWh = 530 Mtpa)
- **Blue**: CO₂ pipelines, fueling infrastructure, pore volume access; upstream CH₄; **acceptance**

Friedmann et al., 2020

Facility	H ₂ Production (tonnes/day)	H₂ Production Process	Operational Commencement
Blue hydrogen			
Enid Fertiliser	200 (in syngas)	Methane reformation	1982
Great Plains Synfuel	1,300 (in syngas)	Coal gasification	2000
Air Products	500	Methane reformation	2013
Coffeyville	200	Petroleum coke gasification	2013
Quest	900	Methane reformation	2015
Alberta Carbon Trunk Line - Sturgeon	240	Asphaltene residue gasification	2020
Alberta Carbon Trunk Line - Agrium	800	Methane reformation	2020
Sinopec Qilu	100 (estimated)	Coal/Coke gasification	2021 (planned)
Green hydrogen			
Trondheim	0.3	Solar (!)	2017
Fukushima	2.4 (10 MW)	Solar	2020
NEOM	650	Wind + Solar	2025 (planned)

Infrastructure limits will delay deployment & add to system costs

- Transmission lines
- Power build-out
- Electrolyzer costs

Mix of blue & green H₂ delivers lower cost + greater volumes

Global hydrogen demand (2030 & 2050; IEA scenarios)

Source: Fan et al., 2021

Key challenges

Sector		2030	2050
Bioenergy			
Share of modern biofuels in modern bioenergy (excluding conversion losses)		45%	48%
Advanced liquid biofuels (mboe/d)	0.1	2.7	6.2
Share of biomethane in total gas networks		2%	20%
CO ₂ captured and stored from biofuels production (Mt CO ₂)	1	150	625
Hydrogen			
Production (Mt H ₂)		212	528
of which: low-carbon (Mt H ₂)	9	150	520
Electrolyser capacity (GW)		850	3 585
Electricity demand for hydrogen-related production (TWh)		3 850	14 500
CO ₂ captured from hydrogen production (Mt CO ₂)	135	680	1 800
Number of export terminals at ports for hydrogen and ammonia trade	0	60	150

Note: mboe/d = million barrels of oil equivalent per day; Mt = million tonnes; $H_2 = hydrogen$.

Upstream emissions receiving greater attention Howarth & Jacobsen (2021) + NY Times story = controversy

Upstream emissions today

- EPA: 1.1-1.7%
- EDF: 2.0-2.3%
- Flaring regions: closer to 3%

What's possible

- Monitoring technology getting good
- Able to seal & repair leaks
- Industry voluntary standard:
 - 0.2% (best)
 - BAU (too common)
- Biden admin: proposing new regs.

How green is blue hydrogen?

Robert W. Howarth¹ | Mark Z. Jacobson²

For Many, Hydrogen Is the Fuel of the Future. New Research Raises Doubts.

A few new and helpful analyses

Pembina Inst. (2021)

includes upstream emissions (~10% LCA if not managed)

Figure 3. Life cycle carbon intensity of hydrogen production

Conclusions: Blue H₂ could reduce 85% Blue H₂ best = solar best

Do not distribute – OUO – work in progress

Conclusion: high capture Blue H₂ could contribute to a net-zero world with very low upstream emissions

Do not distribute – OUO – work in progress

A few new and helpful analyses

Bauer et al. (2021)

These numbers matter!

Policy & political dynamic is non-linear & changing quickly

Do not distribute – OUO – work in progress

Hydrogen Policy Landscape: US

Hydrogen PTC – ranked against standard SMR

- \$3/kg for 95% less; \$1/kg for 95-85%; \$0.75 for 75-85%
- Not possible to achieve the 95% standard!!

CCS & 45Q

- Could be as high as $85/ton CO_2 cannot be stacked with H_2 PTC$
- "Denial of double benefit" provision could make it difficult

Some Power Sector Bits

- Clean Energy Payment Program (CEPP) H₂ footprint assumptions & baseline will affect payments
- 9 states have clean electricity standards not clear how H₂ might qualify for rate recovery

Hydrogen Hubs, Innovation & Infrastructure

- \$8B for 4 hydrogen hubs
- Hydrogen earth shot
- Ports, fueling stations, CO_2 and H_2 pipelines, new transmission lines

Hydrogen Policy Landscape: Other nations

UK

- Blue & green H₂ part of national strategy
- Hubs + contract for differences

Canada

- Blue & green H₂ part of national strategy
- Infrastructure, clean fuel standard, \$170/t C tax

EU

- Blue & green H₂ part of EU strategy
- Infrastructure, incentives, grants

Middle East

- KSA: Blue & green H₂ part of national strategy
- UAE: Blue & green H₂ part of national strategy
- Qatar: Blue H₂ part of national strategy

Japan

- Low-C green premium (blue & green)
- Focus on fuel cells, electrolyzers, shipping

China

- Green H₂ part of national strategy (also grey)
- Focus on fuel cells & electrolyzers

India

 Announcement of new industrial H2 program (steel and refining/chemicals focus)

Chile

• Green H₂ part of national strategy

Australia

• Blue & green H₂ part of national strategy

A few parting thoughts

Arithmetic matters!!

US policy is being shaped without numeracy

- We may shut out virtuous blue & green options
- Will slow deployment
- Will limit US trade, export, and climate priorities

Other nations are taking an "all of the above" approach

We will see more baseless assessments and aggressive messaging

- Many groups have a business model rewarding shrill & innumerate claims
- More scientists and advocates comfortable with ad hominem attacks

Critical & important role for groups like NETL & GTI

Thank You

COLUMBIA | SIPA Center on Global Energy Policy

Assumptions

Howarth & Jacobsen (2021)

- Assessed steam methane reforming (SMR)
 - New projects use an ATR, not an SMR. This allow both higher capture rates and lower costs.
- Low capture rate only 65% capture.
 - New projects are >90% and may are >95%
- High methane leakage rates 3.5% fugitive emissions.
 - US Average: 1.25 (0.85-1.75 range)
 - Best in class: 0.2%
- Large methane consumption in capture tech liquid solvent adder
 - Factually incorrect
 - Capture from an SMR requires almost no energy
 - Does not use liquid solvent approach for 60% capture
 - This is important, since the incorrectly assumed extra energy would leads to extra methane emissions (& extra fugitive).

• Using a 20-year warming potential for methane

- This is debatable: IPCC uses 100-year.
- 20-year impacts higher than 100-year impacts

Conclusion: Blue H₂ **could not be clean & could never contribute to a net-zero world**

23

Do not distribute – OUO – work in progress

Informal revisions of H&J key figure

