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DISCLAIMER

This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor
any agency thereof, nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process,
or service by trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily state or reflect those
of the United States Government or any agency thereof.
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KEY CHALLENGES

1.

2. Dynamic ML-models are computationally intense.
1.

3.

1.

There is no commercial D-NNO product on the market.

Can we develop solution methodologies to keep up with real
fime?

If we want to optimize it, we need to be able to
accurately measure it.

Heat rate is difficult to measure / estimate in real time.

Can we maintain set points in the short term (seconds,
minutes) while optimizing over the longer term (minutes,
hours)?

How do we prototype algorithms without upsetting the
actual plant process?



OVERCOMING
CHALLENGES

- multiple units

'Advanced Sensor

Network

eLead: PacifiCorp and BYU

*Accurate real-time estimation
of Heat Rate to inform
optimization

*Enable economic dispatch of

Advanced Predictive
Controls

elead: ADEX
sFast set point tracking
*Improved stability

*Enhanced ability to reach
optimal solutions
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ASN OBJECTIVE

To measure/calculate the Net Unit Heat Rate (NUHR) in real time for PacifiCorp’s Hunter, Unit 1 coal-fired
boiler during dynamic load operation and report this value to the Dynamic Neural Network Optimization

(DNNO) system. 25000
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+ Calculate and report NUHR to D-NNO
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LOCATIONS OF ASN INSTALLATION

Sampling Grid LOCOhon A
2x5 probes Primary purpose is for performing combustion diagnostics
O&éf;gﬁ'yio *  Measurement of CO, is also included
Temperature + Probes exist at this location (only O, and CO)
_— Horizontal «  Are being upgraded to include measurement of:
Prima .
Superh;yof ¢ VelOC”y
+ Temperature
+ CO,
Preheated
Air
Location B
samplingGid  * Primary purpose is for quantifying air leakage
A\t Heter 2 x 5 probes through Ljungstrém air heater
I / Vggf”?& « New installafion with new duct penefrations

Temperature * 2 ducts must be measured
+ Flow is separated into two air heaters and
downstream ductwork



m 5.0

- 0.0

O, Concentration

0O, (%, wet)

DIFFICULTY OF MEASURING COMPOSITION

Velocity Field

Sampling

Grid

Location s

Temp (°F)
BB 2000

- 500

*These figures shows results from CFD modeling performed by REI for PacifiCorp’s Hunter, Unit 3
under cooperative agreement DE-NT0005288
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MEASUREMENTS AT LOCATION A S

Velocity measurement apparafus | % 3

Roll telemetry

Spherical pitot probe
by Airflow Sciences
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HARDWARE SPECIFIED AND ORDERED

Air Monitor
EES DELTA probe with IBAM Individual burner air measurement (IBAM) system

« Typical DELTA probe
+  Composition (O, & CO)

« Additions for Location A
+  Composition (CO,)
+ Thermocouple

* Air Monitor IBAM
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CALCULATION PLAN, CONTROL SYSTEM

Data from Plant

Gas samples x 10

CO2, CO, 02,
Temp, and DP Heat Rate and overall:

Delta Ps x10 x10 Combustion C0O2,CO, 02

Pressure lines X20 .
Analyze gas calculations and

Read pressure

differences samples mass-weighted
averaging

Air Monitor DELTA Data OPTO 22 Data
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CALCULATIONS

Flue Gas Combustion Calcs Codl Correlaton  Codl Hegﬂng Simple Calc NUHR
Composition Composition Value [

Plant Data Plant Data

Coal Heating Value Correlations

Model Model Form
0
Dulong [2], (3] AH,= aC + b (H _ §> res
Strache-Lant [2], [3], D'Huart [3].Boie [2], [3] AH.= aC + bH + c0 + dS
3 1
Steuver [2] AHC=a(C—§0)+b0+c<H—RO)+dS
Seylor [2], [3] AH,= aC + bH + c0* + d
Gumz [2], [3], Channiwala-Parikh [3] AH.= aC + bH + cN + dS + e0
Dulong-Berthelot [2], [3] AH.=aC +bH—c(N+0—1)+dS
IGT [2], [3] AH.=aC +bH +c+d(0+N)
0
VDI [2] AH, = aC+b<H—§>+cS+dH
Moftt-Spooner [3], [4] AH.= aC + bH + cO + dS for coals with 0 < 15%
AH.= aC + bH + €0 + f0? + gS for coals with 0 > 15%
Given, et al. [4] AH.=aC +bH +cO+dS +e
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PAST NOy, PERFORMANCE RESULTS
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Previous projects with Griffin Open Systems, LLC. and The Griffin Al Toolkit™
focused on combustion optimization for NO, emission rate reduction have
been successful by optimizing air injection around the fireball in closed-loop.
The developed combustion optimization system (COS) was self-learning and
self-adapting, while also allowing incremental manual development.



PAST NOy, PERFORMANCE RESULTS
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Significantly lower NO, emission rates were observed throughout the project’s
duration on average with the self-learning and self-adapting process evident
when comparing quarterly performance averages. NO, emission rates lower
than were recorded prior to implementation were also seen [1].




CURRENT PROJECT PROGRESS
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The system’s capabilities have been demonstrated at the current project
plant site. In-lieu of reliable real-time heat rate values, NO, has been the
optimization target with improvements observed during each project quarter
with the COS active relative to inactive.
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To complement the advanced sensor network, real-time heat rate values
have been estimated on each unit within The Griffin Al Toolkit, based in mass
and heat balances around the fturbine cycle. This system is currently
collecting estimated gross and net turbine cycle heat rate (GTCHR and
NTCHR, respectively) to inform dynamic neural network model building and
later opftimization. Boiler efficiency will also be estimated using a similar
methodology.
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CURRENT PROJECT PROGRESS
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A selection of 10 dynamic data-driven
modeling methods were analyzed for
their ability to represent the combustion
process. Each was used to predict NO,
emission rate over a sixty-step time
horizon.
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The Gated Recurrent Unit (GRU) neural
network was identified to provide the
most accurate and stable prediction of
NOx emission rates across the fime
horizon. Long-Short Term Memory (LSTM),
Support Vector Regression (SVR), and
Vector Autoregression  (VAR) also
exhibited satisfactory performance [2].
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ADEX — ADAPTIVE PREDICTIVE CONTROL

S No regulation PID regulation ADEX regulation
BLOCK
Operational limits
DRIVER
| SETPOINT s

CONTROL
MODEL SIGNAL
MECHANISM
ADEX is a self-tuning Al platform used to ensure real-time control precision. Self-tuning Al
manages controllers for enhanced control over the full load range. A predictive model
incorporates real-time model predictions. An expert block enables knowledge of process
dynamics to influence control decision within various operating domains and accounts for
multi-variable interactions
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DYNAMIC MODEL
Dynamic model created of baill,
turbines, and super-/re-heater

: _' ‘ e U U | Condenser
Simplified reaction chemistry in boiler ‘ ‘ L II ‘

Steam Drum . Super Heaterl| Reheater, “

Three types of thermal inertia:
* Flue gas (very short fimescale)
* Pipes (medium timescale) _ : _
. Refractory brick (long timescale) £ Hot Flue Gas A
E Coattmmon
. . . . o - — /
Boiler discretized spatially and s o < iniectfst?!
temporally § & injection
Performance tuned to existing boiler "'

specifications to within 4% deviation ' \ Flue Gas




MACHINE LEARNING -
LONG SHORT-TERM
MEMORY

Long short-term memory (LSTM) proved
accurate at data-driven dynamic
modeling of simulated plant

High prediction accuracy 10-minutes
into the future, using:

Current system state

System history

Future system inputs

Machine Learning Model used for
Model Predictive Control (MPC) of
boiler
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MACHINE LEARNING-
BASED DYNAMIC

OPTIMIZATION RESULTS

Excess Oz

Proof of concept for Dynamic Neural
Network-based optimization (D-NNO)

Up to 4.58% improvement of Dynamic
over Steady-state Optimization

Results submitted to Applied Energy
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CONCLUSIONS

Because of increased ramping, dynamic
optimization is needed

We need better accuracy in heat rate
estimation to improve D-NNO results

Most promising dynamic models are:
* Long short-term memory (LSTM)
+ Gated-recurrent unit (GRU)

In simulation studies, D-NNO is definitively
better than Steady-State NNO

Going forward, focus on:

« Accurate dynamic ML models trained on best
possible fransient heat rate data

+ Handing algorithmic developments “over the
fence”

+ Coordinating short-term control objectives with
longer-term optimization objectives

+ Developing a commercial D-NNO product
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