IMPROVING COAL-FIRED PLANT PERFORMANCE THROUGH INTEGRATED PREDICTIVE AND CONDITION BASED MONITORING TOOLS

(Award No. DE-FE00031547)

2021 Annual Project Review Meeting

Presented By : Shuchita Patwardhan Microbeam Technologies Inc.

Project Team : David Stadem James Langfeld Emily Theaker Ryan Schulte Steve Benson Microbeam Technologies Inc.

Acknowledgement – DOE NETL Robie Lewis – DOE NETL Project Manager This material is based upon work supported by the Department of Energy Award Number DE-FE0031547

Travis Desell AbdElRahman El-Said Zimeng Lyu Rochester Institute of Technology

5/13/2021

Presentation Overview

Project Information

- Project Team
- Project Goal and Objectives

Background

- Microbeam's Fireside Performance Indices
- Microbeam's Combustion System Performance Indices (CSPI) Program

Accomplishments

- CoalTracker Algorithm Development and Testing
- Combustion System Performance Indices Algorithm Development and Testing
- Opportunities for Plant Improvement and Cost Savings
- Next Steps

Project Team

- Technical Team:
 - Microbeam Technologies Inc.
 - University of North Dakota
 - Institute of Energy Studies (IES)
 - Rochester Institute of Technology
 - Department of Software Engineering
- Funding Support:
 - U.S. Department of Energy, National Energy Technology Laboratory
 - Otter Tail Power's Coyote Station
 - North American Coal Company
 - Great River Energy
- Project Support:
 - Energy Technologies Inc.

Project Information

<u>Goal</u>

Demonstrate at a full-scale coalfired power plant the ability to improve boiler performance and reliability through the integrated use of condition-based monitoring (CBM) and predictions of the impacts of coal quality on boiler operations.

Project Period

January 1, 2018 – December 31, 2021 (4 Years)

MICROBE AM

Primary site: Otter Tail Power's Coyote Station

- Cyclone Fired Boiler
- □ MW 450
- □ Fuel ND Lignite
- Daily fuel delivery 7000 12000 tons of coal 2.5 million tons of lignite annual consumption – Mine mouth plant

Secondary Site: Great River Energy's Coal Creek Station

- Pulverized Tangential Boiler
- □ MW 550 (2 Units)
- □ Fuel ND Lignite
- Annual fuel delivery 7.5 8 million tons of coal Mine mouth plant

Project Overview

Accomplishments

Database Development

- Coal properties, burner performance, and overall plant performance
- □ > 4 years, >200 parameters, >390 million datapoints

Neural Network Training

- □ Burner performance, heat transfer (SSH) performance, plant performance (heat rate)
- Demonstrated impacts of fuel quality on predictions

Combustion System Performance Indices Algorithm Development and Testing

- □ Upgraded version of Combustion System Performance Indices (CSPI) installed at plant
- CoalTracker used to predict adverse fuel events
- Operator training completed: operators use CSPI daily to manage fuel properties
- □ Estimated cost savings of >\$6 million in 2020

MICROBEAM

CoalTracker Algorithms Development and Testing

Full Stream Elemental Analyzer (FSEA) Installation July 2018

<u>Before Installation</u> – Coal analysis results from one composite sample representing 7000 – 12000 tons of coal available **after 3 days of firing**.

<u>FSEA Impact</u> – Coal properties are reported **every minute** for every 90-120 tons of as-delivered fuel **before firing**.

Flexibility of coal blending and storage.

Coal Properties from FSEA – Ash, Moisture, Heating Value, S, C, and inorganic constituents based on prompt gamma neutron activation, microwave, and dual gamma attenuation.

Field Testing

- Collect and analyze coal samples
 - Continued characterization of FSEA performance
 - Obtain detailed data for CoalTracker
- Track power plant performance during the field test
- Use CSPI-CT beta version to predict plant performance
- Validate plant performance with realtime data

Total Number of Coal Samples Collected during the field test -> 149

CoalTracker Output

CSPI-CT Plant Performance Parameter Database Development

-	Databases	Hours of Operation	Datapoints	Databases	Hours of Operation	Datapoints
	А	1691	91092	S	164	9072
	В	390	19761	Т	365	20124
	С	337	18251	U	1899	88107
_	D	601	31587	V	1060	58299
	E	611	28508	W	1217	66986
	F	1294	69549	Х	187	10337
	G	1525	82130	Y	338	18529
	Н	354	19167	Z	1688	91794
	l I	83	4536	AA	1048	56702
	J	29	1620	AB	247	13637
	К	905	48653	AC	353	19768
_	L	1428	77055	AD	158	8848
	Μ	59	3239	AE	588	32928
_	Ν	154	8315	AF	28	1568
	0	371	20033	AG	12	672
_	Р	168	9125	AH	1527	85512
	Q	169	9350	AI	34	1904
-	R	1739	95476	AJ	608	34048

Data Analysis and Statistical Analysis

Ash Deposition Forced outages - Diagnosing problems

Shutdown

As-Fired Coal Properties

On-line Predictions

Neural Network Development Overview

- Neuro-Evolution for Time Series Data Prediction
- Methods (see next slide):
 - NEAT-based (EXALT, EXAMM)
 - □ Ant Colony-based (ASNE, ANTS, CANTS)
 - Transfer learning (N-ASTL)
- Operating Parameters:
 - Main Flame Intensity at 12 cyclone burners
 - □ Steam outlet temperature, SSH
 - Net Plant Heat Rate

- Results:
 - **EXAMM vs.** Traditional RNNs
 - Deep Recurrent Connections
 - Further out predictions (past the next time step)
 - Coal Tracker Integration
 - Time Shifting Coal Tracker
 Parameters
 - Transfer Learning
 - Production RNN Generation
 - Time-lagged Correlation Visualization

Approach to Conducting Statistical and Neural Network Modeling of Boiler Operations

Database

Statistics 🕑

 Reheat Superheater (RSH)

 Conditions monitored – Inlet and outlet temperature, Cleanliness factor, attemp sprays Factors that impact

soot blowing in RSH

Neural Networks

Improving Prediction with Shifted Parameters

- □ Microbeam's coal tracker's program can predict the fuel properties up to 8 hours in the future.
- □ When we train the binaries, we can use those fuel properties ahead of time to improve the training and testing accuracy.
- □ Fuel properties parameters: Base_Acid_Ratio Ash_Content Na_Content Fe_Content BTU Ash_Flow Na_Flow Fe_Flow.
- □ Time offset: 120 mins

Improving Predictions with Smaller Input Sub-file Size

- □ Input sub-files with different size (25, 50, 100 datapoints per file) are tested on EXAMM
- RNNs update the weights of the models with gradients calculated from errors obtained from smaller batches of data
- \Box Sub-file size = 50 performs the best

MICROBEAM

Neural Network Training and Testing

Net Plant Heat Rate and Flame Intensity

Net Plant Heat Rate

Neural Network Training and Testing

Secondary Superheater Outlet Steam Temp

Combustion System Performance Indices (CSPI) Program Upgradation

CSPI-CT

19 -	MICROBE M TECHNOLOGIES, INC.						
	Coal Composition	Coal Handling	Cyclones	Boiler			
Overview	Target Coal Composition - Mir	Coal Tracking Optimization	Silo Coal Composition	Condition-based monitoring			
FSEA	FSEA - Delivered Coal Properti - Moisture	Cyclone Performance - Cyclone Slagging	- Ash - Sodium	- Heat rate - Nose temperature			
Coal Handling	- Heating Value - Sulfur - Ash Composition	- Flame Stability Fireside Performance - Wall Slagging - Erosion - HT Fouling - LT Fouling - Deposit Strength	Operating Parameters - Load, air and coal flows - Air temperature Cyclone Performance - Cyclone Slagging - Oil burn	 Convective pass pressure dro Feedback Optimum fuel properties suggestions - Target goal compositions 			
Cyclone	Coal Quality Index - Ash Content - Base to Acid Ratio						
Boiler	- Sodium Content	- Deposit sirengin	- Flame stability				
Help	Power plant Performance Inde - Coal Quality Index - Over-fired Air		Partitioning - Slag composition - Fly ash composition				
More Info	- Operations Data						
	PONA Mosture and with Motors	ABABCOEFGHJKL					

As-Received Fuel Properties

TECHNOLOGIES, INC.

Coal Mining and Processing Coal Mining/Processing CSPI-CT \times _ Coal – stock piles CCQI: NaN Parameter: NaContent Show Values of Cells Resolution: 50 Cells Per Column of varying qualities <u>ecol: 11.4</u> 2.22 Sorting Coal Blending Criteria -SCA Full Stream Coal Analysis - Moisture, Coal Handling HV, S, ash 930 composition 780 Cyclones Live Storage 480 Boiler 180 Coal Tracker MGA M RPP • 10.75 REE **Burner Silo** 5.14 Properties of coal Bunkers/ delivered to each pulverizer/crusher burner- coal flow Sodium Oxide Content Coal/ash Properties Database (10,000 samples) Last Oyn 8.11 4 6 7 8 9 10 11 12 2 3 5 03/01/2021 12:00 PM 1

MICROBF

TECHNOLOGIES, INC

25

Boiler Operations – Cyclone Performance

Boiler Operations – Cyclone and High Temperature Fouling

CSPI-CT Boiler Diagnostics

TECHNOLOGIES, INC.

Opportunities for Plant Improvement and Cost Savings

Installation of FSEA

- Decreased cost of analysis
- Opportunity to blend coal
- Opportunity to optimize plant operating conditions to match coal properties
- □ Improved heat rate coal property impacts
- Decrease oil firing through optimizing fuel properties
 - No significant oil burn event since installation and use of the technology
- Decrease fireside ash deposition- reduce number of scheduled and forced outages (maintenance costs)
- Preliminary cost savings estimated*

*All cost saving results are estimations and subject to certain assumptions. In particular, it is difficult to determine causes of derates without more detailed documentation from the plant itself, and all revenue data is an estimation based on hourly pricing and MW output without factoring in unplanned shutdowns due to tube leaks, pump failures etc.

29

Heat Rate Savings – CSPI-CT Installation

MICROBE

TECHNOLOGIES, INC.

Condition Based Monitoring (CBM) Project Progress Summary

Next Steps

Validation Field Test

- Planned for May 2021
- □ Field test report due on May 31, 2021

Combustion System Performance Indices Algorithm Development and Testing

- Conduct neural network training for additional boiler parameters
- □ Improve indices predictions based on field test data
- Augment indices with neural network derived relationships
- Installation and testing of a neural network based CSPI-CT

Operator and Plant Personnel Training

□ Follow-up training (initial training Dec. 2020)

Questions

Shuchita Patwardhan, Project Manager

Microbeam Technologies Inc.

Email : <u>shuchita@microbeam.com</u> Phone: (701)-757-6202

Acknowledgment

This material is based upon work supported by the Department of Energy Award Number DE-FE0031547.

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

