Integration of Pumped Heat Energy Storage with a Fossil-Fired Power Plant

Award No. DE-FE0032031
AOI 1B, Phase 1 Feasibility Study

<table>
<thead>
<tr>
<th></th>
<th>DOE:</th>
<th>Non-DOE:</th>
<th>Total:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$ 199,875</td>
<td>$ 50,125</td>
<td>$ 250,000</td>
</tr>
</tbody>
</table>

Prime recipient
Natalie Smith, Ph.D. (PI)
Tim Allison, Ph.D.
Aaron McClung, Ph.D.

Southwest Research Institute
San Antonio, TX

Sub-recipient
Ben Bollinger, Ph.D.
Bao Truong, Ph.D.
Melissa DeValles

Malta Inc.
Cambridge, MA

Sub-recipient
Luminant Generation Company LLC
Texas

Sub-recipient
Matt Ballew
Benefiting government, industry and the public through innovative science and technology

Meet the Future of Energy Storage

Powered by people generating safe, reliable, and cleaner electricity for today.

~39,000 MW of generation across 12 states, powered by a diverse portfolio of natural gas, nuclear, coal, and solar facilities
Pumped Heat Energy Storage (MPHES)

Cycle:
Simple recuperated
Air as the working fluid

Hardware:
Two separate drivetrains
Heat exchangers shared between modes
Storage systems shared

System:
Stand-alone system
Integrates electrically with fossil-energy
Thermal integration with waste heat possible

Performance:
High round trip efficiency (60-65%)
Long lifespan (30+ years)
100 MW system
Long-duration (10+ hours)
Scalable to integrate with assets across a portfolio

Charge Mode
1. Molten Salt Heat Exchanger
2. Charge Compressor
3. Molten Salt at 565°C
4. Recuperator
5. Charge Turbine
6. Antifreeze Heat Exchanger

Discharge Mode
1. Molten Salt Heat Exchanger
2. Discharge Compressor
3. Molten Salt at 565°C
4. Recuperator
5. Discharge Turbine
6. Antifreeze at -60°C

Molten Salt at 565°C
Antifreeze at -60°C
Synergy with Fossil:
Uses hardware components, workforce personnel, and skillsets similar to those used by fossil EGUs

TRL & Development:
System leverages commercially available hardware
Laboratory-scale demonstration of a PHES system investigating control strategies and first implementation challenges of the technology (DE-AR0001018)

Nearly prototype technology readiness level (TRL-5), with near-term pilot demonstration
Integration with Fossil EGU in ERCOT

ERCOT
- Beginning to see a significant shift in the generation mix, as of August 2020,
 - VRE makes up 26% of the ERCOT generation mix
 - Wind energy has seen continued growth
 - Solar energy has grown to a non-zero contribution
- Market with high wind penetration
 - In 2019, ramps due to wind were experienced at 12% total generation in one hour

Luminant Site Selection
Three potential gas-fired power plants were identified during the proposal phase
- Two combined cycle natural gas plants with negative pricing at night
- A simple cycle peaker located near a variety of other assets

All based in North or West Texas where wind energy contributes to grid disturbances throughout the year

Site selection on-going as first major project task
Demonstrate the potential benefits of integrating MPHES with a gas-fired plant

Improved operational performance: Enable gas plants to run with reduced cycling

Increased economic performance: Enable gas plants to better respond to grid disturbances

Improved environmental performance: Allow asset owners to better monitor emissions usage

Site Selection

XX.XX %
Integration of Pumped Heat Energy Storage with a Fossil-Fired Power Plant

Award No. DE-FE0032031