Liquid Air Combined Cycle (LACC) for Power and Storage

Prime recipient
Mr. Aaron Rimpel (PI)
Dr. Owen Pryor
Dr. Aaron McClung
Dr. Tim Allison

Sub-recipient
Dr. William Conlon (Co-PI)
Mr. Milton Venetos

Award No. DE-FE0032002

DOE: $250,000
Non-DOE: $69,120
Total: $319,120

Southwest Research Institute
San Antonio, TX

Pintail Power LLC
Palo Alto, CA
LACC can be applied to existing or new combustion turbine assets

• Advantages
 – Any CT
 – Site anywhere
 – High-TRL components
 – Valuable at large scale
 – Lower CAPEX

• Project objectives
 – Identify application
 – LACC conceptual design
 – Demo-scale LACC
Feasibility calculations have demonstrated preliminary performance

Charging
- 400 kWh/m.t.

Discharging
- Net power
 - SC: 54 MW
 - CC: 77 MW
 - LACC: 104 MW
- Fuel heat rate
 - SC: 8,725 Btu/kWh
 - CC: 5,993 Btu/kWh
 - LACC: 4,532 Btu/kWh
- Primary (electric) energy rate
 \[
 \frac{\text{Charge energy}}{\text{Discharge energy}} = 1.04
 \]
- Liquid air rate = 2.6 kg/kWh
Key commercialization/market considerations for LACC are...

• Cryo liquefaction is capital intensive
 – LACC reduces Liq. Air consumption
 – Zero cost storage medium offsets CAPEX
 – Benefits from economy of scale

• Coupling opportunities
 – Fuel security (co-liquefy natural gas)
 – H\textsubscript{2}, Renewable fuel cost savings via low heat rate
 – Oxy combustion for carbon capture

Best suited for long duration

78 GWh-AC
What is needed to be able to pilot a demo LACC plant by 2025?

• ORC Turbo-machinery selection/design
 – Multiple Radial flow Generator-loaded-expanders (repurposed from LNG)
 – Axial flow high pressure ratio expander

• ORC Heat Exchanger design
 – Recuperator (Δp, effectiveness, cost)
 – LA regasifier/ORC condenser
Storage economics driven by total CAPEX and capacity factor

• Total CAPEX
 – Mature discharge equipment ➔ increase $/kW_{\text{discharge}}$
 – Air is free, tanks have modest cost $/kWh_{\text{storage}}$
 – Leverage LNG experience to reduce $/kW_{\text{charge}}$

• Discharge capacity factor is limited by charging hours
 – Faster charging
 • Charge Power > Discharge Power
 – Optimal ratio depends on wind/solar over-generation duration
 • Charge Energy < Discharge Energy
 – Reduce liquid air rate
Liquid Air Combined Cycle for Power and Storage

Award No. DE-FE0032002

Aaron Rimpel
aaron.rimpel@swri.org

William Conlon
bill.conlon@pintailpower.com