Economically Viable Intermediate to Long Duration Hydrogen Energy Storage Solutions for Fossil Fueled Assets

Zhili Feng WE New Energy Inc

fengz@wenewenergy.com

Project Team: Exelon Corporation Oak Ridge National Laboratory West Virginia University DOE NETL Advanced Energy Storage Initiative Program Project Review Meeting

April 5-6, 2021

WE New Energy

Project Concept:

Synergistically integrated hydrogen energy storage system with coal and gas fueled EGUs (SIHES)

Fossil Fueled Power Plant Synergistically Integrated with H2 Storage

Grid fluctuation for illustration only

- **Technical Viability**: Enables EGUs to operate at optimal baseload operation conditions through the use of <u>sufficiently large</u> storage system to manage the dynamic changes in electric grid demand and electricity price over intermediate to long-durations (i.e., <u>from 12 hours to weeks</u>).
- Economic Viability: target <u>added</u> round-trip levelized cost of energy (LCOE) no greater than 10% of LCOE of today's fossil plant for 30 years operation (\$5-10/MWh).

Phase I

- ► Focuses a <u>site-specific</u> conceptual design for a fossil power plant selected from the Exelon fossil fleet, to demonstrate both the technical and economic feasibility of SIHES.
- Form the basis for subsequent Pre-FEED (Phase II), site demonstration, and eventual deployment of SIHES in fossil power generation.

Large-scale long-duration hydrogen-based energy storage for electricity grid

Today H₂ based energy storage is better than battery, but may not be economically viable for long duration

Added LCOE

Li-Battery: \$100-300/MWh

Hydrogen system: \$50-

60/WMh

Cost of electricity is not

included

Cost of storage vessel accounts for >70% of entire system cost

Proportional to storage duration

The longer the storage duration, the higher percentage of storage vessel sub-system in the entire capital cost

Energy Plant Type	LCOE \$ per MWh
Offshore Wind	130.40
Coal with 30% CCS	104.60
Coal with 90% CCS	98.60
Biomass	92.20
Advanced Nuclear	77.50
Nat Gas Combined Cycle with CCS	67.50
PV Solar	60.00
Hydro-electric	39.10
Land Based Wind	55.90
Natural Gas Combined Cycle	41.20
Geothermal	41.00
Energy Storage System	Additional LCOE \$ per MWh
Li-ion Battery	100-300
Today H2 based	50-60

Basis for analysis:10MW, 7-day storage. 30-year operation life for hydrogen system, and 10 years for Li-ion battery

Proposed R&D

Drastically reduce the cost of hydrogen storage subsystem

- Further develop our ultralow cost steel concrete composite vessel (SCCV) for tailored use in SIHES
- Scalability
 - 500-1000 kg H2 massproduced vessels in shop
 - Super sized tens to hundreds tons of H2 (on-site construction)

Effectively integrating hydrogen energy storage system with fossil assets

 Considerable room and unique opportunities exist in optimal integration of SIHES into fossil assets

Techno-economic optimization

 Optimization of both system design and operation of SIHES for the highly dynamic storage demands and electricity fluctuations

Target level of performance

- Baseline design for a specific type fossil power plant selected by Exelon
- Expected hydrogen energy storage parameters
- Cost target: added round-trip E-H₂-E LCOE in the range of 10% of base LCOE of today's fossil plant (i.e. \$5-10/MWh)
- 300-800MWh for 1-10 days for 30-year operation

Today's high-pressure H₂ storage vessels

- Commercially available low volume vessels
 - Most high-pressure tubes are limited by size such as lengths and diameters (up 20-30 inches)
- Hydrogen embrittlement concerns (especially under cyclic loading conditions)
 - No high-strength steels
 - No weld is allowed
 - Manufacturing process limited the size of tubes

Microsoft uses hydrogen fuel cells to power servers for 48 hours straight (July 27, 2020)

Large volume high-pressure vessels require welding and other different manufacturing technologies

96-ft Long High-Pressure Steel Vessel for ammonia conversion manufactured in the US in 1970s

Low-Cost Steel Concrete Composite Vessel (SCCV) for Stationary High-Pressure Hydrogen Storage

- SCCV is an innovative solution specifically designed and engineered for stationary high-pressure gaseous hydrogen storage applications
 - Addressing the two critical challenges: high capital cost and safety concerns of hydrogen embrittlement of high-strength steels.
 - Invented by the PI, US Patent 9,562,646 B2, ASME Pressure Vessel Code Case 2949
- Novel design
 - Eliminate hydrogen embrittlement problem by design
 - Enable use of cost-effective commodity materials (concrete and steels)
- Advanced welding, manufacturing and sensor technologies for reduced cost and improved safety
 - Can be fabricated with today's commercially ready manufacturing technologies in the US
 - Scalability enabled by advanced welding technologies:
 - 500 2000 kg H2 mass-produced vessels in shop
 - Super sized tens to hundreds tons of H₂ Vessels (on-site construction)

SCCV is cost competitive

- Today's vessel cost: \$1000-1500/kg H₂
- Our technology:
 - \$500-600/kg H2 at 875 bar (US price).
 - Reference SCCV design: 1500kg H₂ in moderate volume production (24 identical vessels per order)
- Improvement in design, manufacturing and economics of scale will further reduces the cost to \$200-300/Kg H2 at high volume production

	100 kg	167 kg	200 kg	270 kg	320 kg	500 kg
FSOL	771	639	585	568	574	680
FSLL	765	635	583	566	572	679
ESOL	810	<mark>669</mark>	660	613	604	707
ESLL	805	665	658	611	603	706

Our E-H₂-E technology

Today's technology

Basis for analysis:10MW, 7-day storage. 30-year operation life for hydrogen system, and 10 years for Li-ion battery

Energy Plant Type	LCOE \$ per MWI	h
Offshore Wind	130.40	
Coal with 30% CCS	104.60	
Coal with 90% CCS	98.60	
Biomass	92.20	
Advanced Nuclear	77.50	
Nat Gas Combined Cycle with CCS	67.50	
PV Solar	60.00	
Hydro-electric	39.10	
Land Based Wind	55.90	
Natural Gas Combined Cycle	41.20	
Geothermal	41.00	
Energy Storage System	Additional LCOE \$ per MWI	
Li-ion Battery	100-300	
Today H2 based	50-60	
Our H2 based	5-20	

Data source: EIA, NREL, solarcellcentral.com 7/2020

Team

- WE New Energy Inc (lead)
- Exelon
- Oak Ridge National Laboratory
- West Virginia University