Ammonia-Based Energy Storage Technology (NH₃-BEST)

Award Number: DE-FE0032014

Prime Recipient: University of North Dakota Energy & Environmental Research

Center (EERC)

PI: Ted Aulich, taulich@undeerc.org, 701-213-0590

Subrecipient: Vetri Labs

Participants and cost share providers:

Basin Electric Power Cooperative
Minnkota Power Cooperative
Otter Tail Power Company

North Dakota Industrial Commission

Location: Grand Forks, North Dakota

DOE: \$250,000

Non-DOE: \$176,390

Total: \$426,390

Objectives

Model, validate, and advance NH₃-BEST from TRL2 to TRL3, via following tasks:

- Define—with utility partners—NH₃-BEST operational and performance targets based on power plantspecific energy storage objectives
- Using appropriate process simulation software, develop dynamic model of NH₃-BEST
- Utilize model to:
 - Develop preliminary design of NH₃-BEST subsystem
 - Identify work to advance to component-level engineering and validation testing
 - Define power plant system integration requirements
 - Establish performance requirements and their relationship to cost
 - Identify technical and nontechnical gaps to resolve for NH₃-BEST commercial deployment

Ammonia-Based Energy Storage Technology (NH₃-BEST) Award Number: DE-FE0032014

NH₃-BEST integrated with electricity generation unit (EGU)

NH₃-BEST unit operations

Ammonia-Based Energy Storage Technology (NH₃-BEST)

Award Number: DE-FE0032014

Relevance and Outcomes/Impact

As energy storage medium, ammonia offers the following benefits:

- High hydrogen content (18 wt%), energy content (23 MJ/kg), and stability
- Low storage cost
- Near-zero explosivity hazard
- Carbon-free composition

And....because ammonia is a long-established globally fungible commodity, the highly developed ammonia industry represents an NH₃-BEST economic flexibility attribute, since it opens possibilities for selling and/or buying ammonia to capitalize on market conditions or address production or supply challenges

Major project outcomes include:

- Preliminary design of NH₃-BEST subsystem and associated EGU integration requirements
- Modeled demonstration of NH_3 -BEST performance, including estimated round-trip efficiency and preliminary economics when integrated with an EGU
- A road map for bringing ammonia energy storage to commercial deployment, including identification of
 work needed to advance to component-level engineering and validation testing documented in TMP, and
 technical and nontechnical gaps to resolve for eventual implementation at system level
- Demonstration of 1-step low-pressure electrolytic ammonia production from air, water, and electricity

Ammonia-Based Energy Storage Technology (NH₃-BEST)

Award Number: DE-FE0032014

- 1) What is needed to be able to pilot **a demo plant by 2025?** Convince utility that NH_3 -BEST deployment offers major economic benefit, based on:
 - Model-generated data
 - Demonstrated commercial viability of 1) low-pressure electrolytic ammonia synthesis and
 2) ammonia-powered fuel cell
- 2) What does NETL need to consider in regard to a **low-carbon future**? When produced via low- or zero-carbon process, ammonia co-combustion with coal and/or natural gas can reduce CO_2 emissions without increasing NO_x emissions
- 3) How can NETL help **transition coal assets** as they retire over the next 10-15 years?

 Help define pathways for economically transitioning coal mining and conversion infrastructure to producing and processing coal as carbon ore
- **4) Dealer's choice** Is there a particular topic, issue, or area of need that NETL should be aware of? Japanese have been doing utility-scale (120-MW) coal–ammonia co-combustion for several years, and are targeting coal/ammonia feed ratio (Btu basis) of at least 80/20

Ammonia-Based Energy Storage Technology (NH₃-BEST) Award Number: DE-FE0032014

Include your contact information if you would like to be contacted directly for additional questions. We intend to summarize key points from the prior 3-5 speakers and hope to have some time to answer questions received in the chat.

Ted Aulich, taulich, taulich@undeerc.org, 701-213-0590