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Touchstones main focus is on the development of silicon carbide 
products using domestic coal as the carbon source. 

Purpose

Carbon

• Bituminous coal (lv, mv, hv)

• Ash impurity <1%, Sulfur <1%

• Semi-coke, Met-Coke

Silicon 

• CFOAM conversion via polymer infusion 
pyrolysis (PIP), (preceramic polymers)

• Coal and resin blends

• Metallurgical grade silicon (Si)

CFOAM®– Carbon Foam from Coal

CFOAM carbon foam winglet machining

Porous Silicon Carbide
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• Coal to products:

• Touchstone utilizes coal as carbon feedstock to produce high-value materials 
and  products.

• Active Phase II SiC Foam development.

• Track record of success in developing and commercializing carbon foam and 
graphite foam (CFOAM®) products from coal → CFOAM LLC.

• SiC manufactured from coal for use as a PCM substrate or heat exchanger 
in sCO2 heat exchanger technology. 

• Will coal enable low-cost and high-volume production of silicon carbide 
products that can meet TES and/or sCO2 heat exchanger requirements?

Strategic Alignment with Fossil Energy Objectives

Develop technologies to maximize the value from fossil energy 
resources, including their production and use.
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• Metals - High temperature nickel-based alloy current SOA.

• Ceramic – SiC current SOA

• High thermal conductivity and serviceable up to 1600C in air.

• Oxidation, corrosion, and erosion resistant.

• High mechanical strength and creep resistant

• High hardness is favorable attribute but makes machining difficult.

• Process routes include RBSC, CVD, CVI, PIP; raw materials can be costly.

• Product size and throughput potentially limited.

• SiC Foam from coal (Touchstone)

• Current SOA process yield porous SiC (<1.0 g/cm2)

• Coal and metallurgical grade silicon (preferred) are low-cost raw materials

• Machinable, alternative near net shape manufacturing approach in development

• Low density cellular structure designed for phase change material (PCM) for TES

Technology Benchmarking
sCO2 Brayton Cycle – Recuperators (Heat Exchangers)
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Table from technology review meeting1 was modified from previous workshop2

Potential Applications for sCO2 for Power Conversion  

1. Quadrennial Technology Review 2015, Supercritical Carbon Dioxide Brayton Cycle Chapter 4: Technology Assessments
2. sCO2 Power Cycle Roadmapping Workshop, SwRI, San Antonio, TX, February 2013
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Identified 33 Organizations and 50 Points of Contact

Status of the Commercialization Effort

Industry Contacts Organizations Examples

Energy (CSP) 16 11 BrightSource Ind., SunPower Corp., GE, Aztec Solar

Aerospace 9 4 GE Research, Lockheed Martin, Reaction Engines, Dynetics Technical 
Solutions, Inc.

Marine 7 3 Huntington Ingalls Industries, Commonwealth Center for Advanced 
Manufacturing, Block Research Group (ETH Zurich)

Construction 4 4 Saint-Gobain, Honeywell, Dupont, Block Research Group (ETH Zurich)

Federal 14 11 NREL, DARPA, SNL, ONR, MDA, Army ARDEC, NSWCCD

Total 50 33
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Current Status of the Project

• SiC Foam process based upon silicon resin process has been 
narrowed  down to a single mix formulation.

• Current SOA geometry is 8-12” dia. x 1” thick form factor.

• Preliminary design for a plate/fin cross-flow SiC heat exchanger 
core is complete.

• Seeking a dialog with Sandia Laboratory to refine sCO2 Brayton 
cycle recuperator requirements.

• Materials development for higher density SiC continues.

• Process optimization to enhance yields

• Production of a-SiC
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• To date, performed 142 trial runs consisting of various mix designs, processing 
conditions and geometry:

• 3-hv, 2-mv, 1-lv coal type, of which two had low ash and low sulfur.

• Evaluated coal pretreatment, semi-coke and calcined.

• Evaluated 3 silicon (Si) source types, resin, metal, oxide (silica).

• Explored the use of binders (pitch and resins) and foaming agent.

• Made first successful sintering run above 1600C.

• Project results accumulated during this reporting period are available in 
following slides.

• TEC and sCO2 heat exchanger concepts

• Process methodology

• Material Properties

• Microstructures

Summary of accomplishments
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Silicon Carbide Foam PCM Substrate

Proposed TES Concept
SiC Foam – Salt PCM

HTF pipe
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Dual purpose TES when filling/sealing flue gas channels with PCM

Design of Supercritical CO2 Heat Exchanger

Wavy Fin Optimal Heat Transfer

High Density Straight Fin

HD-SiC from Coal

SiC Core

Metal or CFCC Manifold Case

sCO2

Inlet

Flue Gas
Inlet

Parallel Plate with Fins
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Near Net Shape Processing
Preliminary Process

Uneven Surface

Near Net Shape Pre-sintering
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Property Preceramic Polymer Silicon Metal

Density (g/cm3) 0.58 0.87

Porosity (%) 82 73

Compressive Strength (psi) 200 500

Weight Loss (%) G→S 49[1] 15

Processing Temp. Limit (C) 1550[2] 1800[3]

a-SiC (6H) N TBD

-SiC (3C) Y Y

Preceramic polymer vs Si metal source

Properties

[1] High SiO(g) production
[2] Decomposes at process temperature T>1600C
[3]1800C successful, future work scheduled for 2000C and 2200C
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12” Diameter Mold (Ref. 2-43)

As-Foamed

Trimmed
Sintered (SiC)

Sintered (SiC)



16

Outer skin removed

24x24 Inch Molded Panel
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Microstructure Variations (cont.)

2-118

2-133 fine

2-43

2-132 coarse
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Microstructure 2-118 
Stereomicroscopy 50X
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Microstructure 2-132 

Unreacted Si

SiC and C

Sintered 1550C 12h soakStereomicroscopy at 32X

Sintered 1800C 2h soak
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• CSP appears to have limited market potential as the solar market is 
being dominated via photovoltaics (PV).

• Resin based SiC systems:
• Offer lightweight but low heat treatment restriction causes thermal 

conductivity to fall short of 25 W/m·K target.

• Resins produce and abundant level of SiO gas when converting to SiC, 
excess forms cristobalite on the furnace walls. 

• Highest cost silicon source but not deemed prohibitive.

• Silica (SiO2) was not deemed suitable for a Si feedstock.

• Si-metal process should be pressure molded and heat treated to 
1800C minimum to enhance thermal and structural properties for 
thermal energy storage and heat exchanger requirements for sCO2.

Technical Challenges
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• Resin based SiC systems:
• Determine how much PCM can be loaded into the structure and make final 

assessment for this application.

• Align low-density high-porosity SiC foam for composite core sandwich structure 
technology markets.

• Document manufacturing best practice documents.

• Coal/Si-metal systems:
• Determine feasibility for pressure molding current mix design.

• Complete high temperature sintering and finalize process based upon current 
recipe.

• Update physical and thermal properties.

• Develop solid works model geometry for single layer plate/fin heat transfer and 
pressure drop analysis.

• Develop preliminary model for heat transfer and pressure drop analysis using ANSYS 
Analytical for different fin geometry and density (no. fins/inch).

• Update commercialization plan

Pathway Forward
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• High performance, high volume, and low cost SiC
products for general industry use.

• High temperature heat exchangers that can 
operate in harsh environment up to 1400-1500 C.

• Compact modular heat exchanger design for 
sCO2 Brayton recuperators.

• Standard HX fin design practices can be utilized for 
maximizing heat transfer duties with small T with 
minimal pressure drop.

• High hardness of SiC should translate to high erosion 
resistance.

• Design is better suited for high-temp heat exchange 
for sCO2

Market gap this project will address

Preparing Project for Next Steps

Ref: Next Generation Receivers R&D Virtual Workshop, Series Concentrating Solar Power Program
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Technology to market path

Preparing Project for Next Steps

• Product market potential by end of project:

• Small scale/commercial trials

• Remaining technology challenges:

• High pressures in sCO2 Brayton recuperators.

• Demonstrate near net shape process for HD-SiC

• New research needs identified:

• Model, Simulation, Design

• Fin configuration, heat exchanger core sizing

• Heat transfer vs. pressure drop analysis

• Increase SiC strength/density for sCO2

• Near net shape pressure molding 

• Industry collaborators:
• Seeking collaboration with SNL (Tech Demo)
• Solar Towers - BrightSource Industries
• Aerospace Composites: GE Global Research, DARPA



24

• Greatest integration/transition challenge is getting molten salt into Foam 
Pores.

• Pore size, distribution, and tortuosity.

• Currently achieve 82% total porosity, 90% ideal.

• PCM loading not precise

• Touchstone has discovered alternative silicon carbide materials processing 
from coal feedstock that have higher value proposition as high density SiC
produced from coal offers a technical solution for sCO2 heat exchangers 
and thermal energy storage.

• Higher density→ higher strength→ higher thermal conductivity→ higher heat transfer

• Channels in plate/fin technology offer optimal PCM loading.

• Overcomes technical limitation present with PCM infusion into microstructure.

• Storing excess thermal energy produced from coal fired power plants is a 
more viable option as CSP is a risky proposition due to PVs availability and 
affordability in the solar industry.

How results apply directly to Fossil Energy goals

Concluding Remarks
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End of Presentation


