

Molten Salt Containment in CSP-GEN-3 Systems

Touchstone Research Laboratory, Ltd. Contract DE-SC0018678

Project Period: July 02, 2019 – August 18, 2021

Dwayne Morgan (PI) Phone: (304) 547-5800 Ext. 231 Email: drm@trl.com

Touchstone Research Laboratory, Ltd.

Phase II Team

NATIONAL ENERGY TECHNOLOGY LABORATORY

Department of Energy (Sponsor)

- NETL (Grant Administration & Program Oversight)
- Ms. Barbara Carney, Project Manager
- Mr. Walter Strzepka, Contract Management Specialist

Touchstone Research Laboratory, Ltd.

- Mr. Brian Joseph, President and CEO
- Mr. Brian Gordon, R&D Director
- Mr. Dwayne Morgan, Sr. Research Scientist, (PI).
- Mr. J. W. Freeland, Contracting Specialist

TechOpp Consulting Inc. (TABA)

- Bob Fielder President
- Mary Ann Bonadeo Project Manager (POC)

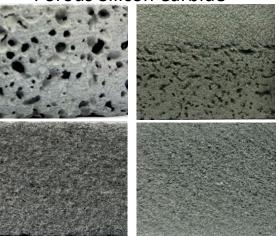
Purpose

Touchstones main focus is on the development of silicon carbide products using domestic coal as the carbon source.

Carbon

- Bituminous coal (lv, mv, hv)
- Ash impurity <1%, Sulfur <1%
- Semi-coke, Met-Coke

Silicon


- CFOAM conversion via polymer infusion pyrolysis (PIP), (preceramic polymers)
- Coal and resin blends
- Metallurgical grade silicon (Si)

CFOAM carbon foam winglet machining

Porous Silicon Carbide

Strategic Alignment with Fossil Energy Objectives

Develop technologies to maximize the value from fossil energy resources, including their production and use.

- Coal to products:
 - Touchstone utilizes coal as carbon feedstock to produce high-value materials and products.
 - Active Phase II SiC Foam development.
 - Track record of success in developing and commercializing carbon foam and graphite foam (CFOAM[®]) products from coal → CFOAM LLC.
- SiC manufactured from coal for use as a PCM substrate or heat exchanger in sCO₂ heat exchanger technology.
- Will coal enable low-cost and high-volume production of silicon carbide products that can meet TES and/or sCO₂ heat exchanger requirements?

Technology Benchmarking

sCO₂ Brayton Cycle – Recuperators (Heat Exchangers)

- Metals High temperature nickel-based alloy current SOA.
- Ceramic SiC current SOA
 - High thermal conductivity and serviceable up to 1600C in air.
 - Oxidation, corrosion, and erosion resistant.
 - High mechanical strength and creep resistant
 - High hardness is favorable attribute but makes machining difficult.
 - Process routes include RBSC, CVD, CVI, PIP; raw materials can be costly.
 - Product size and throughput potentially limited.
- SiC Foam from coal (Touchstone)
 - Current SOA process yield porous SiC (ρ <1.0 g/cm²)
 - Coal and metallurgical grade silicon (preferred) are low-cost raw materials
 - Machinable, alternative near net shape manufacturing approach in development
 - Low density cellular structure designed for phase change material (PCM) for TES

Potential Applications for sCO₂ for Power Conversion

Table from technology review meeting¹ was modified from previous workshop²

Application	Cycle type	Motivation	Size [MWe]	Temperature (°C)	Pressure [MPa]
Nuclear	Indirect sCO ₂	Efficiency, Size, Water Reduction	10 - 300	350 - 700	20 - 35
Fossil Fuel (PC, CFB,)	Indirect sCO ₂	Efficiency, Water Reduction	300 - 600	550 - 900	15 - 35
Concentrating Solar Power	Indirect sCO ₂	Efficiency, Size, Water Reduction	10 - 100	500 - 1000	35
Shipboard Propulsion	Indirect sCO ₂	Efficiency, Size	<10 - 10	200 - 300	15 - 25
Shipboard House Power	Indirect sCO ₂	Efficiency, Size	<1 - 10	230 - 650	15 - 35
Waste Heat Recovery	Indirect sCO ₂	Efficiency, Size, Simple Cycles	1 - 10	< 230 - 650	15 - 35
Geothermal	Indirect sCO ₂	Efficiency	1 - 50	100 - 300	15
Fossil Fuel (Syngas, nat gas)	Direct sCO ₂	Efficiency, Water Reduction, CO ₂ Capture	300 - 600	1100 - 1500	35

1. Quadrennial Technology Review 2015, Supercritical Carbon Dioxide Brayton Cycle Chapter 4: Technology Assessments

2. sCO₂ Power Cycle Roadmapping Workshop, SwRI, San Antonio, TX, February 2013

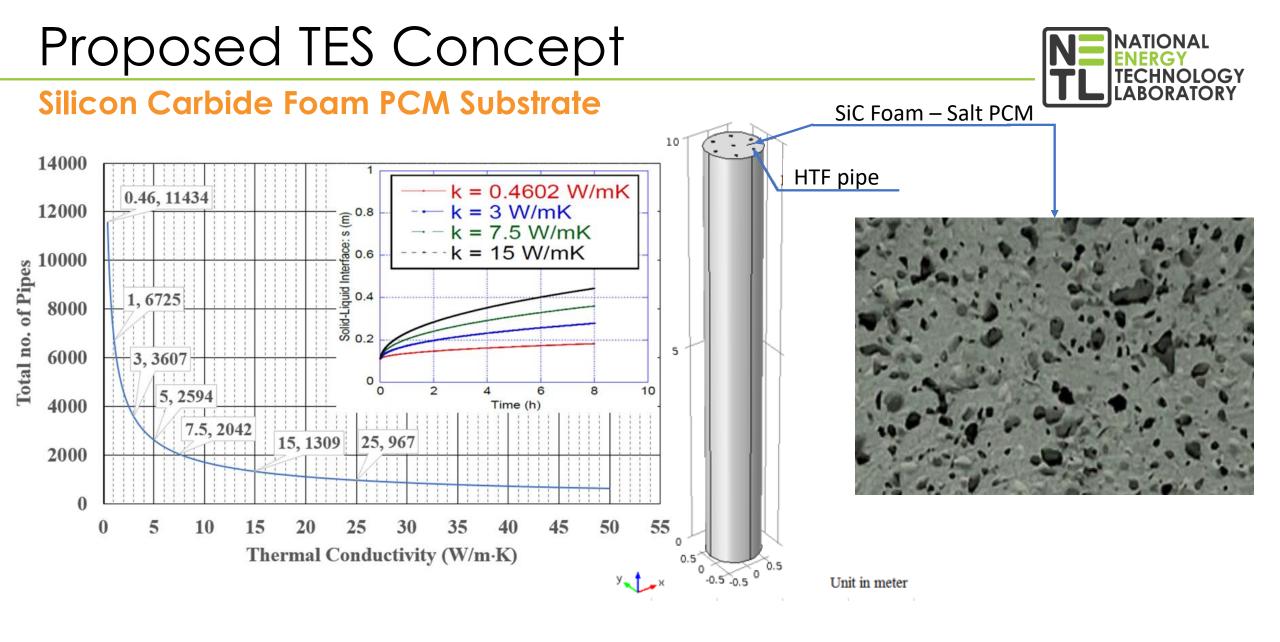
Status of the Commercialization Effort

Identified 33 Organizations and 50 Points of Contact

Industry	Contacts	Organizations	Examples
Energy (CSP)	16	11	BrightSource Ind., SunPower Corp., GE, Aztec Solar
Aerospace	9	4	GE Research, Lockheed Martin, Reaction Engines, Dynetics Technical Solutions, Inc.
Marine	7	3	Huntington Ingalls Industries, Commonwealth Center for Advanced Manufacturing, Block Research Group (ETH Zurich)
Construction	4	4	Saint-Gobain, Honeywell, Dupont, Block Research Group (ETH Zurich)
Federal	14	11	NREL, DARPA, SNL, ONR, MDA, Army ARDEC, NSWCCD
Total	50	33	

Current Status of the Project

- SiC Foam process based upon silicon resin process has been narrowed down to a single mix formulation.
- Current SOA geometry is 8-12" dia. x 1" thick form factor.
- Preliminary design for a plate/fin cross-flow SiC heat exchanger core is complete.
- Seeking a dialog with Sandia Laboratory to refine sCO₂ Brayton cycle recuperator requirements.
- Materials development for higher density SiC continues.
 - Process optimization to enhance yields
 - Production of α -SiC


Summary of accomplishments

- To date, performed 142 trial runs consisting of various mix designs, processing conditions and geometry:
 - 3-hv, 2-mv, 1-lv coal type, of which two had low ash and low sulfur.
 - Evaluated coal pretreatment, semi-coke and calcined.
 - Evaluated 3 silicon (Si) source types, resin, metal, oxide (silica).
 - Explored the use of binders (pitch and resins) and foaming agent.
- Made first successful sintering run above 1600C.
- Project results accumulated during this reporting period are available in following slides.
 - TEC and sCO₂ heat exchanger concepts
 - Process methodology
 - Material Properties
 - Microstructures

Design of Supercritical CO₂ Heat Exchanger

RESEARCH LABORATORY, LTD

Near Net Shape Processing

Preliminary Process Uneven Surface

Near Net Shape

Pre-sintering

Properties

Preceramic polymer vs Si metal source

Property	Preceramic Polymer	Silicon Metal
Density (g/cm ³)	0.58	0.87
Porosity (%)	82	73
Compressive Strength (psi)	200	500
Weight Loss (%) $G \rightarrow S$	49 ^[1]	15
Processing Temp. Limit (C)	1550 ^[2]	1800 ^[3]
α-SiC (6H)	Ν	TBD
β-SiC (3C)	Y	Y

[1] High SiO(g) production

- [2] Decomposes at process temperature T>1600C
- [3]1800C successful, future work scheduled for 2000C and 2200C

12" Diameter Mold (Ref. 2-43) NATIONAL ENERGY TECHNOLOGY LABORATORY **As-Foamed** Sintered (SiC) TOUCHSTONE RESEARCH LABORATORY Sintered (SiC) Trimmed

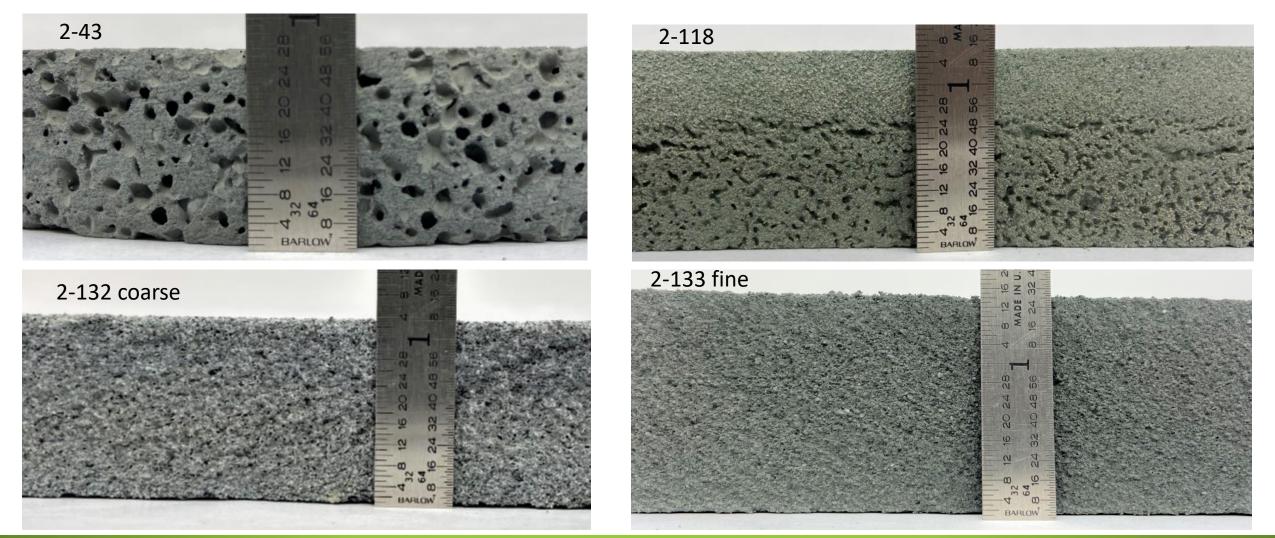
CHSTONE

RESEARCH LABORATORY, LTD.

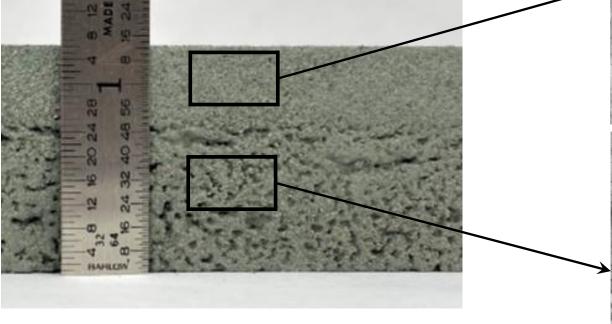


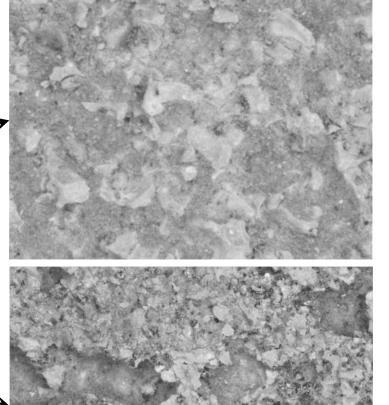
24x24 Inch Molded Panel

Outer skin removed

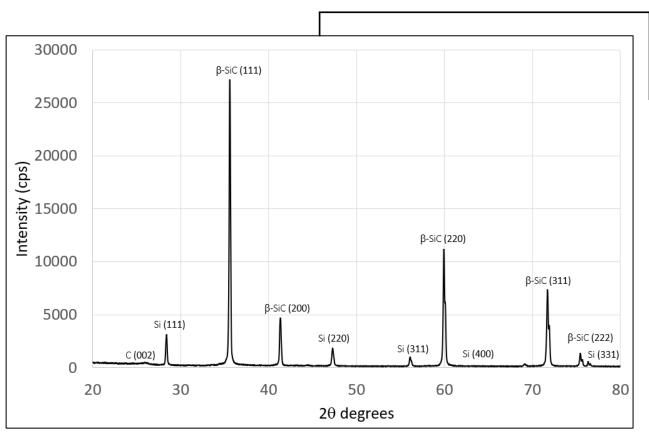


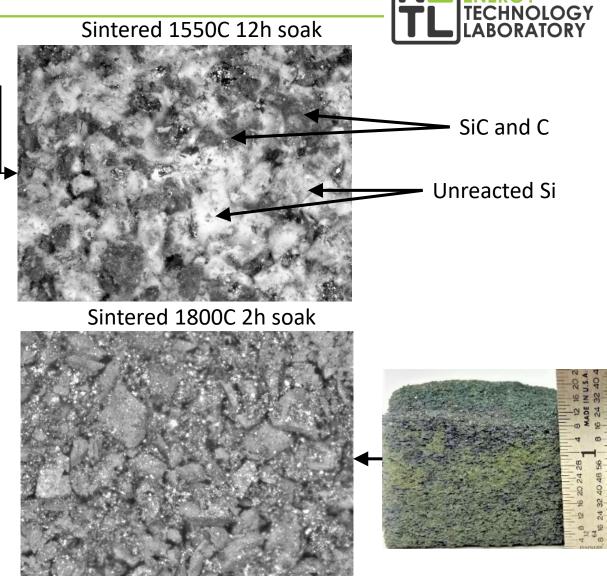
Microstructure Variations (cont.)





Microstructure 2-118 Stereomicroscopy 50X





Microstructure 2-132

Stereomicroscopy at 32X

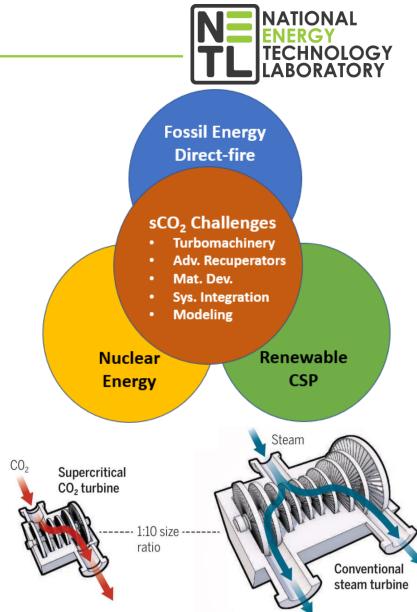
Technical Challenges

NATIONAL ENERGY TECHNOLOGY LABORATORY

- CSP appears to have limited market potential as the solar market is being dominated via photovoltaics (PV).
- Resin based SiC systems:
 - Offer lightweight but low heat treatment restriction causes thermal conductivity to fall short of 25 W/m·K target.
 - Resins produce and abundant level of SiO gas when converting to SiC, excess forms cristobalite on the furnace walls.
 - Highest cost silicon source but not deemed prohibitive.
- Silica (SiO2) was not deemed suitable for a Si feedstock.
- Si-metal process should be pressure molded and heat treated to 1800C minimum to enhance thermal and structural properties for thermal energy storage and heat exchanger requirements for sCO₂.

Pathway Forward

- Resin based SiC systems:
 - Determine how much PCM can be loaded into the structure and make final assessment for this application.
 - Align low-density high-porosity SiC foam for composite core sandwich structure technology markets.
 - Document manufacturing best practice documents.
- Coal/Si-metal systems:
 - Determine feasibility for pressure molding current mix design.
 - Complete high temperature sintering and finalize process based upon current recipe.
 - Update physical and thermal properties.
 - Develop solid works model geometry for single layer plate/fin heat transfer and pressure drop analysis.
 - Develop preliminary model for heat transfer and pressure drop analysis using ANSYS Analytical for different fin geometry and density (no. fins/inch).
- Update commercialization plan

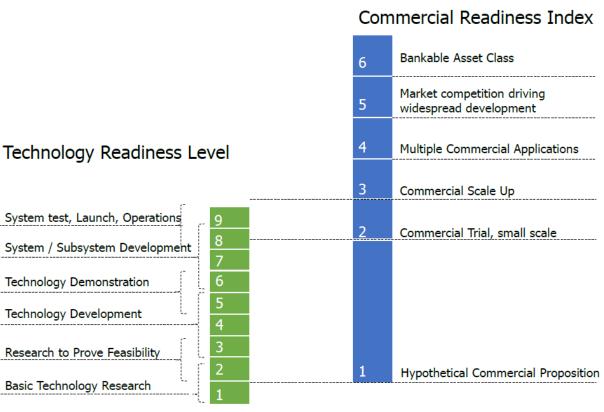


Preparing Project for Next Steps

Market gap this project will address

- High performance, high volume, and low cost SiC products for general industry use.
- High temperature heat exchangers that can operate in harsh environment up to 1400-1500 °C.
- Compact modular heat exchanger design for sCO₂ Brayton recuperators.
 - Standard HX fin design practices can be utilized for maximizing heat transfer duties with small ΔT with minimal pressure drop.
 - High hardness of SiC should translate to high erosion resistance.
 - Design is better suited for high-temp heat exchange for sCO2

Ref: Next Generation Receivers R&D Virtual Workshop, Series Concentrating Solar Power Program


23

Preparing Project for Next Steps

Technology to market path

- Product market potential by end of project:
 - Small scale/commercial trials
- Remaining technology challenges:
 - High pressures in sCO_2 Brayton recuperators.
 - Demonstrate near net shape process for HD-SiC
- New research needs identified:
 - Model, Simulation, Design
 - Fin configuration, heat exchanger core sizing
 - Heat transfer vs. pressure drop analysis .
 - Increase SiC strength/density for sCO₂
 - Near net shape pressure molding
- Industry collaborators:
 - Seeking collaboration with SNL (Tech Demo)
 - Solar Towers BrightSource Industries •
 - Aerospace Composites: GE Global Research, DARPA

https://arena.gov.au/assets/2014/02/Commercial-Readiness-Index.pdf

Concluding Remarks

NATIONAL ENERGY TECHNOLOGY LABORATORY

How results apply directly to Fossil Energy goals

- Greatest integration/transition challenge is getting molten salt into Foam Pores.
 - Pore size, distribution, and tortuosity.
 - Currently achieve 82% total porosity, 90% ideal.
 - PCM loading not precise
- Touchstone has discovered alternative silicon carbide materials processing from coal feedstock that have higher value proposition as high density SiC produced from coal offers a technical solution for sCO₂ heat exchangers and thermal energy storage.
 - Higher density \rightarrow higher strength \rightarrow higher thermal conductivity \rightarrow higher heat transfer
 - Channels in plate/fin technology offer optimal PCM loading.
 - Overcomes technical limitation present with PCM infusion into microstructure.
- Storing excess thermal energy produced from coal fired power plants is a more viable option as CSP is a risky proposition due to PVs availability and affordability in the solar industry.

End of Presentation

