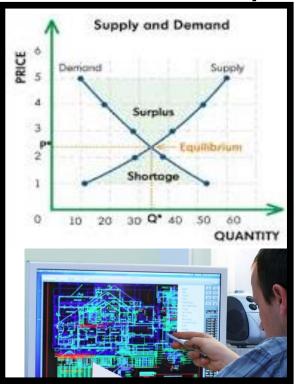
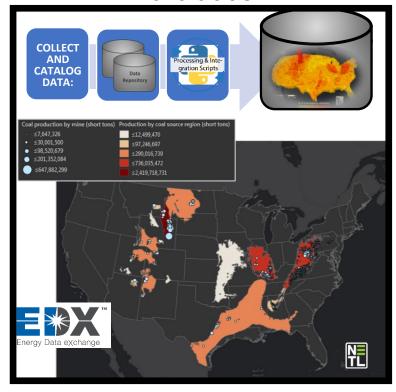
NETL's Intramural Research Program in Advanced Coal Processing



Christopher Matranga, Materials Engineering & Manufacturing Division


Materials Discovery & Design

Market, Process, & Environmental Analysis

American Coal Database

Outline:

Materials Discovery & Design

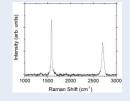
Market, Process, & Environmental Analysis

American Coal Database

Materials Discovery & Design

Coal Value Chain

Domestic Feedstocks


Carbon Materials

Commercial Applications

Coal, Char, Pitch, Liquids

Low Defect Graphene Films

Graphene

Nanoflake

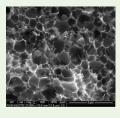
Graphite

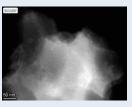
Carbon **Nanosheets**

Graphene

Quantum Dots

Biosensing & **Medical Diagnostics**


Construction **Materials**

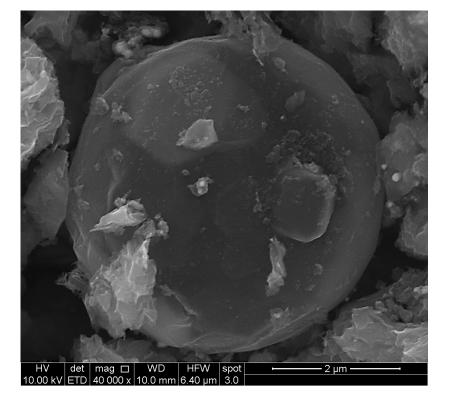

Carbon **Electronics**

Energy Storage (Gas & Electrical)

Manufacturing Graphite from Domestic Coal and Coal/Biomass Blends

NEW START April 2021

NETL Approach:

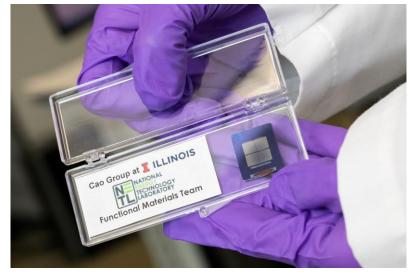

Improving Graphite Manufacturing

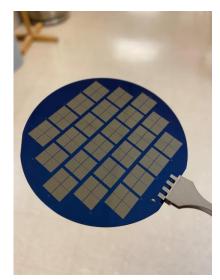
- Reduce environmental footprint: w/catalytic & microwave processes to reduce manufacturing temp & time
- **Lower manufacturing costs:** polygeneration of graphite + other carbon products w/low-cost feedstocks

Economic & Environmental Analysis of Graphite Manufacturing

- **Estimate market penetration** for coal/biomass utilization
- Quantify impact on jobs in mining & manufacturing
- Analyze GHG & environmental footprint of coal/biomass utilization for graphite

NETL's Low Temp Graphitization of Coal



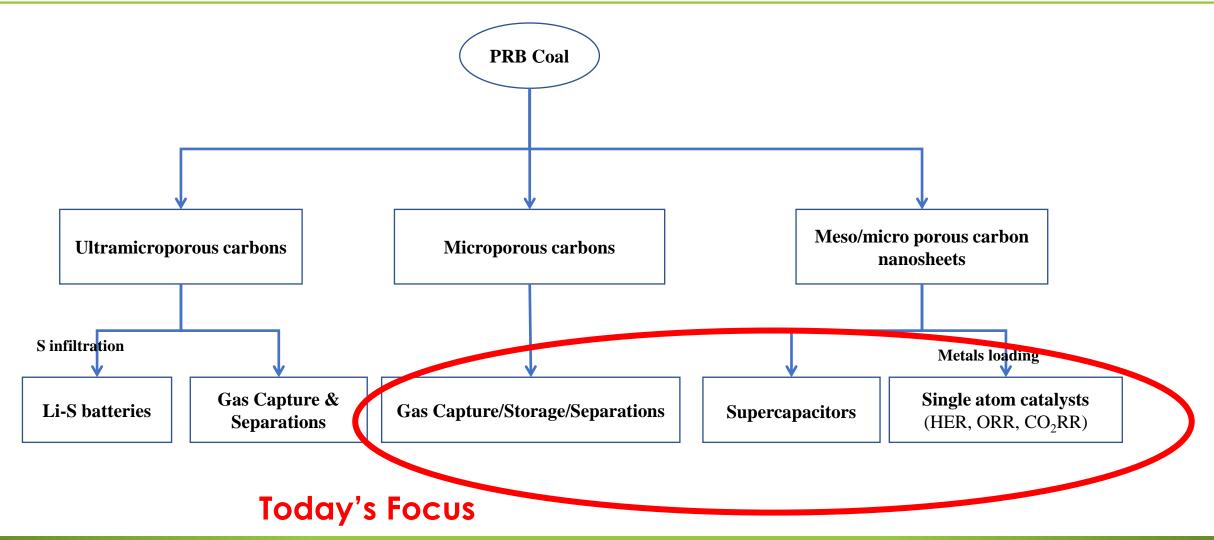

Carbon Electronics: Memristor Computer Memory

1-inch prototype (~1000 Devices)

Coal-based Memristor Devices:

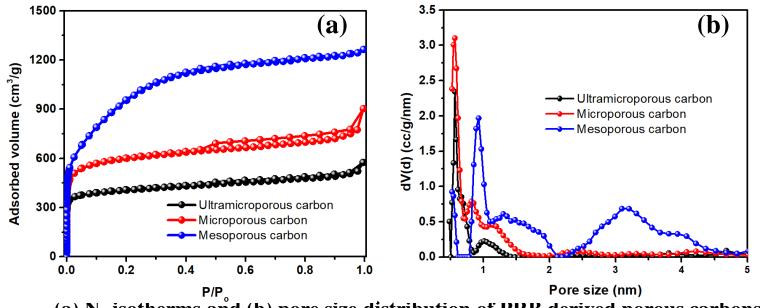
- Made from char waste of pilot scale coal to liquids process (Carbon Technology Company, VA)
- Atomically thin amorphous film of carbon used as dielectric switching medium
- Lowers energy consumption 10-100 X
- Improves device performance (filament formation/retraction)
- Material is stable during fabrication & long-term device operation
- Stable operation for 1000s+ of cycles
- Patent Filed 3/2021
- License being negotiated w/industrial partner

Prof Qing Cao
Dept Materials Science

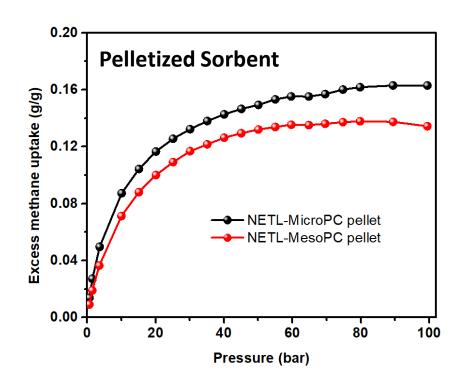


Materials Engineering & Manufacturing Division

Tunable Porous Carbon Materials From Powder River Basin Coal

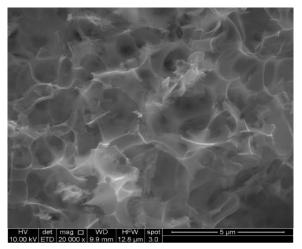


Tunable Pore Sizes, Highly Microporous

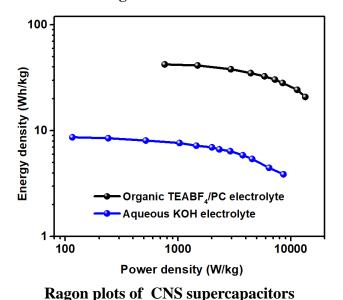

(a) N_2 isotherms and (b) pore size distribution of PRB derived porous carbons

	BET SSA (m²/g)	QSDFT SSA (m²/g)	Ultramicropore volume (≤ 0.7 nm; cm³/g)*†	Micropore volume (≤ 2.0 nm; cm³/g)*†	Mesopore volume (2.0 – 50.0 nm; cm ³ /g)*†	Total pore volume (cm ³ /g)*
Ultramicroporous carbon	1480	2120	0.42 (55.3%)	0.62 (81.6%)	0.14 (18.4%)	0.76
Microporous carbon	2250	2440	0.41 (37.3%)	0.81 (73.6%)	0.29 (26.4%)	1.1
Mesoporous carbon	3500	2760	0.10 (5.6 %)	0.85 (47.2%)	0.95 (52.8%)	1.8

Porous carbons for methane storage


0.30
| LMA738 | LMA726 | LMA405 | Maxsorb | RGC30 | F400 | HKUST-1 | HKUST-1

Methane uptake of PRB derived porous carbons at 25 °C, 100 bar,


Chem. Mater. 2015, 27, 3, 959–964

Porous carbon nanosheets (CNSs) for supercapacitors

SEM image of coal derived CNS

Comparison of carbon-based supercapacitors, 6M KOH electrolyte, two-electrode cell

	Capacitance at 1.0 A/g	Rate capacity (1.0 to 20 A/g)	Cycling stability	Reference
NETL CNS	240 F/g	80 %	>90 %, 100,000 cycles, 4 A/g	NETL
N-doped graphene	250 F/g	76 %	95 %, 10,000 cycles, 2 A/g	Nano Lett., 2011, 11, 2472–2477
Holey graphene hydrogel	310 F/g	88 %	95 %, 20,000 cycles, 25 A/g	Nat. Commun., 2014, 5, 4554
Immense surface area carbon	280 F/g	85 %	80 %, 75,000 cycles, 25 A/g	J. Mater. Chem. A, 2017, 5, 13511
Commercial AC Norit	85 F/g	80 %	Not reported	J. Mater. Chem. A, 2017, 5, 13511

Performance in other solvent systems

	Capacita nce (F/g)	Rate capacity	Cycling stability	Energy Density (Wh/kg)	Power Density (W/kg)	Voltage (V)	Solvent
NETL CNS	up to 200	55 %	>90 %, 30,000 cycles	4.5-17.5	200-7,000	0-1.6	1 M Na ₂ SO ₄
NETL CNS	up to 145	70 %	T.B.D.	20-42	700-14,000	0-3	1M TEABF ₄ w/propylene carbonate

Outline:

Materials Discovery & Design

Market, Process, & Environmental Analysis

American Coal Database

Market Analysis

NATIONAL ENERGY TECHNOLOGY LABORATORY

EY 18

Graphene

Carbon Fiber

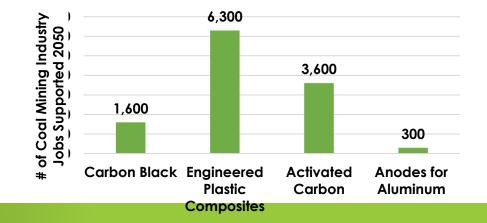
- Carbon Fiber Cement
- Graphene Cement
- Roofing Tiles
- Carbon Composites

EY 19 EY 20

Conductive Inks

Battery Anodes

Carbon Foam


- Carbon Black
- Engineered Composites
- Activated Carbon
- Al Anodes

Market Impact

Products

	U.S. Product Consumption (MMt)	U.S. Production of Carbon Product (MMt)	U.S. Production of Carbon Product (MMt)	Product Price (\$2019/t)	Coal-Based Carbon Product (MMt)	Potential U.S. Coal Production (MMt)
Carbon Product	2019	2019	2050*	2050	2050	2050*
Carbon Black	1.5	1.5	2.3	\$939	1.8	13.1
Engineered Plastic Composites	1.5	2.4	108.1	\$2,706	86.5	51.9
Activated Carbon	0.7	2.3	11.3	\$2,035	9.0	30.1
Anodes for Aluminum**	3.4	1.1	1.5	\$3,674	1.2	2.8

Workforce Impact

	Projected Number of Manufacturing Jobs Created (2019) Based on Employment- to-Industry Output Ratio
Carbon Product	2050*
Carbon Black	3,400
Engineered Plastic Composites	294,200
Activated Carbon	37,700
Anodes for Aluminum**	9,300

Process Analysis: Technoeconomic Analysis of NETL's Coal to Graphene (C2G) Process

Approach

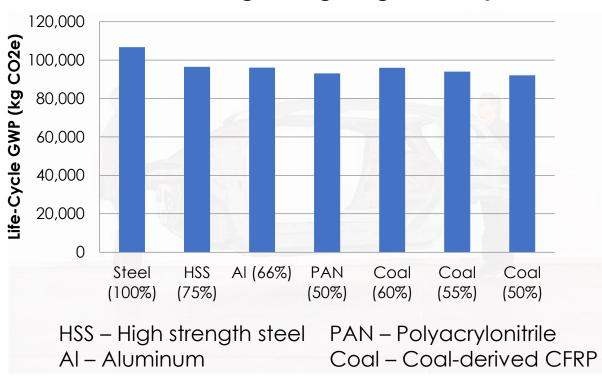
- Preliminary TEA conducted for NETL's C2G process
- Process Scale: = 4 tonnes/day coal, 2 tonnes/day carbon product

Outcomes

- Quantified price reductions with comparison to current commercial products (graphite derived)
- TEA identified additional process improvements for NETL-RIC to investigate
- C2G TEA will be used to inform LCA in EY21

NETL's C2G Process

Environmental Analysis of Coal Carbon Fiber & Use in Vehicle Light Weighting


Approach

- Screening study of coal-derived CFRP and vehicle light weighting initiated March 2020.
- Industrial stakeholders provided inventory data of coal CFRP manufacturing and automotive use.
- LCA compares life cycle environmental impacts of coal-derived CFRP, PAN CFRP, Steel, and Aluminum-bodied light vehicles.

Outcome

- LCA study of coal-derived CFRP completed March 2021
- Initial draft of LCA journal manuscript is completed and currently under internal review process.

Life-cycle Global Warming Potential for Vehicle Lightweighting Pathways

Outline:

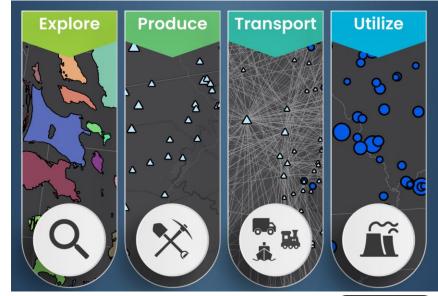
Materials Discovery & Design

Market, Process, & Environmental Analysis

American Coal Database

American Coal Database and Virtual Platform

American Coal Databased (ACD)


- Collection of existing coal databases from federal, state, university entities.
- Datasets updated to interface w/modern databases/computer codes
- Provides wide range of data on coal properties, geology/geochemistry, & supply chain/logistical issues

Virtual platform (VP)

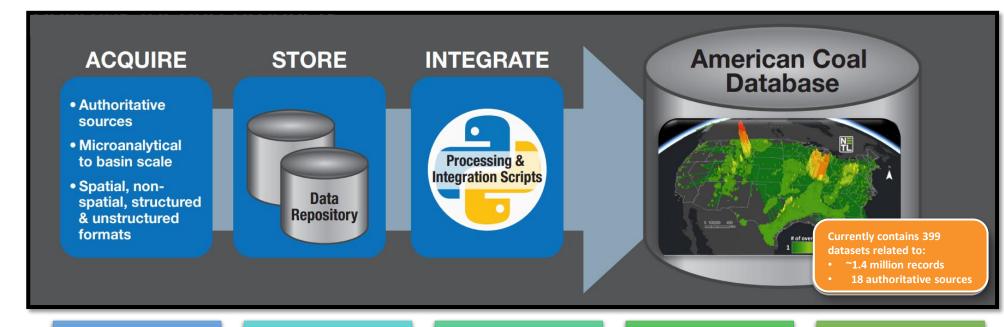
- Interactive web application that allows users to query the ACD to collect, visualize, and analyze datasets
- Enables geospatial mapping of data for geochemistry, geology, logistics/infrastructure, and coal seam properties

ACD + VP will be publicly released via NETL's Energy Data Exchange (expected 2021)

https://edx.netl.doe.gov/

Publication: Justman, D., Rose, K., Thomas, B. (Expected 2021). "A database and framework associated with US coal resources and supply chains." Technical publication under internal review.

Contents of the ACD


Sources include

 USGS, EIA, state geologic surveys & agencies

Contains

- 399 datasets
- ~1.4 M records

What features and attributes does it contain?

Coal and ash samples

- Proximate/ultimate analyses
- Oxides and trace elements
- Macerals
- Rank
- Others

Geology

- Coal bed geometries
- •fields/basins/boundaries

Production

- Deliveries from mine
- Coal region
- •Location/operator information

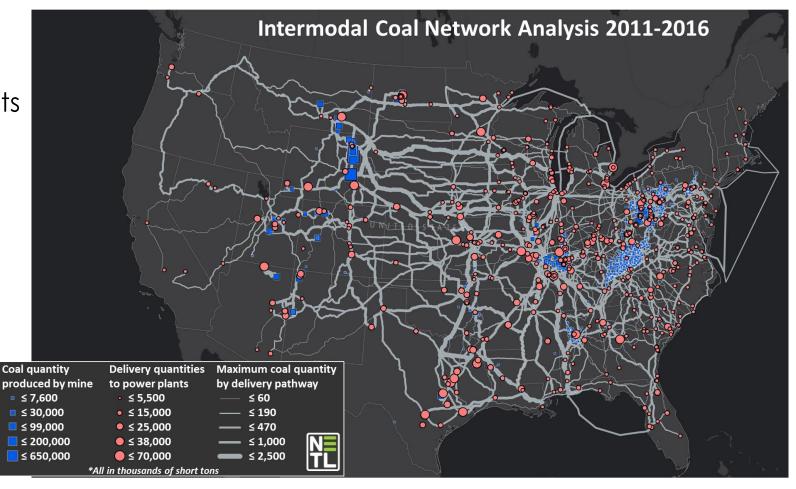
Coal deliveries

- Quantity coal delivered
- Coal region
- •Bulk ash/sulfur/ mercury content

Power plants

- Consumption
- Quantity delivered from mine/region
- Byproduct quantity
- Ash disposition

ACD + virtual platform query: PRB Coal Production



Future work

Incorporate modeling efforts into virtual platform

- Coal beneficiation/products
 & carbon manufacturing products
- Improve transportation efficiency
- Identify supply chain hazards
- Optimizing supply chain networks

Thank You!

