A Novel Process for Converting Coal to High-Value Polyurethane Products

DOE/NETL Agreement DE-FE0031795

Project Overview

NATIONAL ENERGY TECHNOLOGY LABORATORY

Coal to Polyurethane (PU) Foam Products

- Client: DOE/NETL; Cost Share Grant from State of Ohio (OCDO/ODSA)
- Project Team: Battelle and MLB Molded Urethane Products
- Project Manager: Dr. Satya Chauhan (Battelle)
- Period of Performance: 2 years; from 10/1/2019 to 9/30/2021
- Convert coal-derived liquids to high-value polyurethane foam

Statement of Problem

- Increase utilization of coal through new applications
- Need conversion processes to efficiently improve value proposition of coal
- Produce high-value solid products from coal via direct liquefaction of coal
 - Bituminous coal
 - · Western coal

Project Objectives

Demonstrate a novel coal-to-PU foam process at bench-scale and establish a straightforward path to near-term commercial production

- Confirm a high rate of return compared to petroleum-based, solid PU foam products
- Determine the PU foam properties to establish a market value and demand for these high-value solid products
- Develop a process scale-up and commercialization plan
- Advance the coal-liquids-to-polyols process to TRL 5 from the current TRL 3
- Promote the use of coal in the face of environmental regulations

Alignment With DOE Objectives

Areas of Interest (AOI)

- Advanced technology aligns with AOI 2-Producing High-Value Solid Products from Domestic U.S. Coal
 - 2A-Laboratory testing of technologies for making high-value solid products from coal
 - 2B-Continuous process testing of technologies for high-value solid products from coal
- Project aimed at producing polyols (primay component in PU foams) with typical value ~\$2000/Metric Tonne (MT)
- Can utilize various feedstocks
 - Coal liquefaction products
 - Bituminous or sub-bituminous coal products

Proposed Technology

- Coal is turned to liquids using Battelle's proven CTL technology based on use of bio-based solvents, with optional fuel-oil byproduct; also applicable to coal-pyrolysis feedstocks
- The coal-derived liquids are treated via ozonation/transesterification to create polyols in Subsystem 2; project focus is to determine performance advantages over industrial polyols
- In Subsystem 3, polyols are converted to PU-foam products, which typically sell for over \$5,000/MT

Project Starting Status

- Technology Readiness Level (TRL) 3
 - Proof of concept Demonstrated
 - Filed patent application
- Current target for feedstock
 - Direct coal-liquefaction liquids and its fractions
- Solvent ozonation
- Transesterification step
 - Short-chain polyols

Technology Benchmarking

- Successful benchmarks
 - PU foam properties
 - Reactivity
 - Density
 - Compression at break
 - Polyol properties
 - Typical hydroxyl value range
 - Viscosity
 - Density

- Hydroxyl value=360
- Sucrose/Glycerol initiated polyether polyol
- Viscosity ~3500 cps at 25C
- Density 1.06 g/cm³

Project Plan

- Oct 1, 2019 start date
- Task 2 and Subtasks 3.1, 4.1, and 5.1-complete
- Subtasks 3.2, 3.3, 4.2, and
 5.2 in progress
- ~2 months behind, due to COVID-19 restrictions

			BP-1 FY20				BP-2						
							FY21						
Task/Subtask	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q1			
Task 1.0 - Project Management and Planning													
Project Management Plan	1												
Quarterly Progress Reports		\Diamond	\Diamond	\Diamond	\Diamond	\Diamond	\Diamond	\Diamond	\Diamond				
Draft Final Report									\Diamond				
Final Report									10	\			
Task 2.0 - Small-Batch Coal-to-PU Foam Testing													
Subtask 2.1 - Feedstock Selection	-	2											
Subtask 2.2 - Polyol Process Evaluation													
Subtask 2.3 - Foam Formulation		г	3										
Task 3.0 - Large-Batch Coal-to-PU Foam Testing													
Subtask 3.1 - Feedstock Procurement				4									
Subtask 3.2 - Polyol Production													
Subtask 3.3 - Foam Preparation						6							
Task 4.0 - Polyurethanes Characterization													
Subtask 4.1 - Preliminary Polyurethane Foam Testing													
Subtask 4.2 - Detailed Polyurethane Foam Application Testing				g .			1	7					
Task 5.0 - Conceptual Plant Design and Economic Analysis													
Subtask 5.1 - Preliminary TEA			1		5								
Subtask 5.2 - Final TEA							*	8 🔷					
Task 6.0 - Technology Gap Analysis and Process Scale-up Plan								-	9				
♦ Milestone • Decision Point ♦ Deliverable							DOEFO	A1992-02					

Results for Coal Liquefaction

- Consider ≥80% solubilization of coal as successful
- 18 tests on Ohio (Middle Kittaning) coal, with 80-89% solubilization at various proportions of coal-liquids recycle for slurrying coal
- Liquefaction of Western (Wyoming) coal was 79%.

Polyol Formation

- Main ozonolysis step parameters tested
 - Ozone equivalent (eq): 0.5, 1.0, and 2.0
 - Temperature: 15 to 40°C
 - Ozonation Rate (0.5-1; correlates to 6-12 grams O₃/hr)
- Transesterification with
 - C3 polyols
 - Other primary polyols
- 47 Polyols produced to date
 - 28 range-finding tests
 - 2 polyols from western coal; comparable PU foam mechanical properties
 - 19 additional polyols produced as part optimization
- Found 1.0-1.5 eq ozone to be acceptable for polyol formation

Ozonation Parametric Effects

- Ozonation parameters explored
 - Ozone equivalent (eq) based on weight ozone/grams coal liquids
 - Rate at which ozone was delivered
- Effect of increasing eq
 - Increases functionality
 - Most important effect on foam properties
- Ozonation rate
 - Two rates evaluated
 - Minor effect on performance
 - Slower rate had slight improvement in foam properties likely due to uptake

Effect of Ozonation Temperature

- Effect on Foam Compressive strength
 - Lower temp improved performance
 - Optimum temperature: ~30C
- Effect on functionality (checked by NMR)
 - Not as large effect
 - Slight improvement at lower temperature
- Effect on polyols Viscosity
 - Not a major effect
 - Slight improvement on lower and higher from average

Compressive Strength vs Ozonation Temperature

25°C Viscosity vs Ozonation Temperature

Overall Parametric Performance

Determination from Design of Experiments

- Optimized conditions based on
 - Functionality
 - Foam compressive strength
 - Temperature
 - Ozone equivalents
 - Ozonation rate
- Determined optimal
 - Ozone equivalents=1.5
 - Solvent: C3 to C4
 - Ozonation rate= 0.75 (Rate 1= 29 grams ozone per gram coal liquids)
 - Temperature: 20 to 30°C

Scale-Up to Bench Scale

- Bench scale utilizing Mettler RC-1e calorimeter with HP-50 reactor
- Initially tested at 1 kg/batch; continuous stirred tank, batch reactor
 - Obtained relative heat-of-reaction data
 - Tested up to 16-hr reaction time
- Switching to continuous after batch
 @ ~0.3 Kg/hr (scheduled)
- Polyol formation run via batch transesterification post ozonation

Conceptual Plant Capital Cost

BASIS

- Coal-derived polyol production plant capacity of 170 MT/day
 - 6.5% of US PU foam demand
- Current selling price of SG-360 polyol: \$1.00/lb
- Coal-derived polyol selling price: \$0.80/lb

CAPITAL COST

- Capital cost escalation: 3.5%/yr
- Construction period: 3 yrs
- Fixed Capital Cost: \$34.80M
- Other capital cost: \$22.44M
- Total As-Spent Cost (TASC): \$70.73M

Estimated Revenue & Operating Cost

Annual Cost Component (con)	Cost or Revenue (\$000/yr)
TOTAL RAW MATERIAL COSTS	\$50,330
TOTAL LABOR COST	\$3,780
TOTAL UTILITY COST	\$1,452
EQUIP MAINTENANCE COST	\$1,679
TOTAL OPERATING COST	\$57,241
TOTAL REVENUE (\$0.80/lb)	\$97,874

Estimated Rate of Return

NATIONAL ENERGY TECHNOLOGY LABORATORY

Assumptions:

- 3% annual inflation costs and products
- 20 year operating life
- 15 year depreciation, double declining balance
- 2019 costs

Internal Rate of Return (IRR)	Selling Price, \$/lb
31%	\$0.80
21%	\$0.69
16%	\$0.64

Met Project Success Criteria

Success Criteria

- ≥80% of liquified coal can be converted to polyols: Achieved 80-89%
- The properties of at least one coal-derived PU foam are acceptable for higher value (over \$5,000/MT) foams: Achieved
- The return on investment (ROI) is at least 12%/year;
 Estimated at 30+% at product selling price 20% below current market price

Market Benefits

- Worldwide PU foam market is over \$80 billion/year and growing at 10%/yr in 2018
- US PU foam market ~ \$20 billion/year with similar growth
- Advantageous properties through use of coal-as demonstrated in prior work
 - Satisfying the US demand for PU foam for insulation consume 4,000 MT per day (1.3 million MT/yr) of coal; 5.2 million MT/yr for worldwide PU foam demand
- PU foam is widely produced and used in USA, and this project has support from mterra and MLB Molded Plastics
- Coverts low cost coal to high value PU foam (solid) products
- Fixes fossil-based carbon in solid products, reducing carbon footprint
- Known conversion chemistry from other higher priced feedstocks
- Drop-in replacement of current PU components

Path To Market

- Exploring potential commercialization partners
 - Producer of coal-derived polyols
 - Manufacturers of rigid and/or flexible foams
- Easiest path to market is partner with foam-formulators to assess product performance for drop-in replacement

Courtesy: MLB; http://mlbproducts.net/mlb5_009.htm

Concluding Remarks

- Demonstrated the feasibility of converting coal to polyurethane (PU) foam, meeting the success criteria of at least 80% conversion of coal carbon to PU foam carbon with a high (30+%) internal rate of return (IRR)
- Process seems applicable to both bituminuous and sub-bituminous coals
- Produced 47 polyols from coal, using various test conditions, including replicates
- Foams from coal initially determined to have performance equivalent to industrial standard
- Bench-scale, continuous system ready to scale-up the coal-to-polyol process to TRL 5
- Project discussions with two potential commercialization partners have been quite positive; open to other potential partners

Acknowledgements

- Cost share provided by Ohio Coal Development Office (OCDO)
- Commercialization guidance being provided by MLB
- Dan Garbark; Battelle: Bench-scale testing
- Jeff Cafmeyer; Battelle: PU foam characterization
- Russ Smith; Battelle Subcontractor: Process scale-up and TEA
- Darwin Argumedo; Battelle: Process simulation and TEA support
- Kathryn Johnson; Battelle: Deputy Project Manager

