A Novel Process for Converting Coal to High-Value Polyurethane Products

DOE/NEL Agreement DE-FE0031795

Dr. Satya Chauhan; PI/PM; Battelle
Chauhan@Battelle.org; 614-424-4812
April 28, 2021
Project Overview

Coal to Polyurethane (PU) Foam Products

- Client: DOE/NETL; Cost Share Grant from State of Ohio (OCDO/ODSA)
- Project Team: Battelle and MLB Molded Urethane Products
- Project Manager: Dr. Satya Chauhan (Battelle)
- Period of Performance: 2 years; from 10/1/2019 to 9/30/2021
- Convert coal-derived liquids to high-value polyurethane foam
Statement of Problem

- Increase utilization of coal through new applications
- Need conversion processes to efficiently improve value proposition of coal
- Produce high-value solid products from coal via direct liquefaction of coal
 - Bituminous coal
 - Western coal
Demonstrate a novel coal-to-PU foam process at bench-scale and establish a straightforward path to near-term commercial production

- Confirm a high rate of return compared to petroleum-based, solid PU foam products
- Determine the PU foam properties to establish a market value and demand for these high-value solid products
- Develop a process scale-up and commercialization plan
- Advance the coal-liquids-to-polyols process to TRL 5 from the current TRL 3
- Promote the use of coal in the face of environmental regulations
Alignment With DOE Objectives

Areas of Interest (AOI)

- Advanced technology aligns with AOI 2-Producing High-Value Solid Products from Domestic U.S. Coal
 - 2A-Laboratory testing of technologies for making high-value solid products from coal
 - 2B-Continuous process testing of technologies for high-value solid products from coal
- Project aimed at producing polyols (primary component in PU foams) with typical value ~$2000/Metric Tonne (MT)
- Can utilize various feedstocks
 - Coal liquefaction products
 - Bituminous or sub-bituminous coal products
Proposed Technology

- Coal is turned to liquids using Battelle’s proven CTL technology based on use of bio-based solvents, with optional fuel-oil byproduct; also applicable to coal-pyrolysis feedstocks
- The coal-derived liquids are treated via ozonation/transesterification to create polyols in Subsystem 2; project focus is to determine performance advantages over industrial polyols
- In Subsystem 3, polyols are converted to PU-foam products, which typically sell for over $5,000/MT
Project Starting Status

- Technology Readiness Level (TRL) 3
 - Proof of concept Demonstrated
 - Filed patent application
- Current target for feedstock
 - Direct coal-liquefaction liquids and its fractions
- Solvent ozonation
- Transesterification step
 - Short-chain polyols
Technology Benchmarking

• Successful benchmarks
 • PU foam properties
 ▪ Reactivity
 ▪ Density
 ▪ Compression at break
 • Polyol properties
 ▪ Typical hydroxyl value range
 ▪ Viscosity
 ▪ Density

• Currently benchmarking versus industrial standard Huntsman SG-360
 • Hydroxyl value=360
 • Sucrose/Glycerol initiated polyether polyol
 • Viscosity ~3500 cps at 25C
 • Density 1.06 g/cm³
Project Plan

- Oct 1, 2019 start date
- Task 2 and Subtasks 3.1, 4.1, and 5.1 - complete
- Subtasks 3.2, 3.3, 4.2, and 5.2 in progress
- ~2 months behind, due to COVID-19 restrictions

<table>
<thead>
<tr>
<th>Task/Subtask</th>
<th>BP-1</th>
<th>BP-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 1.0 - Project Management and Planning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Management Plan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quarterly Progress Reports</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Draft Final Report</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final Report</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 2.0 - Small-Batch Coal-to-PU Foam Testing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtask 2.1 - Feedstock Selection</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Subtask 2.2 - Polyol Process Evaluation</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Subtask 2.3 - Foam Formulation</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Task 3.0 - Large-Batch Coal-to-PU Foam Testing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtask 3.1 - Feedstock Procurement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtask 3.2 - Polyol Production</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtask 3.3 - Foam Preparation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 4.0 - Polyurethanes Characterization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtask 4.1 - Preliminary Polyurethane Foam Testing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtask 4.2 - Detailed Polyurethane Foam Application Testing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 5.0 - Conceptual Plant Design and Economic Analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtask 5.1 - Preliminary TEA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtask 5.2 - Final TEA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 6.0 - Technology Gap Analysis and Process Scale-up Plan</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- ◇ Milestone
- ● Decision Point
- ◇ Deliverable
Results for Coal Liquefaction

- Consider ≥80% solubilization of coal as successful
- 18 tests on Ohio (Middle Kittaning) coal, with 80-89% solubilization at various proportions of coal-liquids recycle for slurrying coal
- Liquefaction of Western (Wyoming) coal was 79%.
Polyol Formation

- Main ozonolysis step parameters tested
 - Ozone equivalent (eq): 0.5, 1.0, and 2.0
 - Temperature: 15 to 40°C
 - Ozonation Rate (0.5-1; correlates to 6-12 grams O$_3$/hr)

- Transesterification with
 - C3 polyols
 - Other primary polyols

- 47 Polyols produced to date
 - 28 range-finding tests
 - 2 polyols from western coal; comparable PU foam mechanical properties
 - 19 additional polyols produced as part optimization

- Found 1.0-1.5 eq ozone to be acceptable for polyol formation
Ozonation Parametric Effects

- Ozonation parameters explored
 - Ozone equivalent (eq) based on weight ozone/grams coal liquids
 - Rate at which ozone was delivered

- Effect of increasing eq
 - Increases functionality
 - Most important effect on foam properties

- Ozonation rate
 - Two rates evaluated
 - Minor effect on performance
 - Slower rate had slight improvement in foam properties likely due to uptake
Effect of Ozonation Temperature

- Effect on Foam Compressive strength
 - Lower temp improved performance
 - Optimum temperature: ~30°C
- Effect on functionality (checked by NMR)
 - Not as large effect
 - Slight improvement at lower temperature
- Effect on polyols Viscosity
 - Not a major effect
 - Slight improvement on lower and higher from average
Overall Parametric Performance

Determination from Design of Experiments

- Optimized conditions based on
 - Functionality
 - Foam compressive strength
 - Temperature
 - Ozone equivalents
 - Ozonation rate

- Determined optimal
 - Ozone equivalents = 1.5
 - Solvent: C3 to C4
 - Ozonation rate = 0.75 (Rate 1 = 29 grams ozone per gram coal liquids)
 - Temperature: 20 to 30°C
Scale-Up to Bench Scale

- Bench scale utilizing Mettler RC-1e calorimeter with HP-50 reactor
- Initially tested at 1 kg/batch; continuous stirred tank, batch reactor
 - Obtained relative heat-of-reaction data
 - Tested up to 16-hr reaction time
- Switching to continuous after batch
 @ ~0.3 Kg/hr (scheduled)
- Polyol formation run via batch transesterification post ozonation
Conceptual Plant Capital Cost

BASIS
- Coal-derived polyol production plant capacity of 170 MT/day
 - 6.5% of US PU foam demand
- Current selling price of SG-360 polyol: $1.00/lb
- Coal-derived polyol selling price: $0.80/lb

CAPITAL COST
- Capital cost escalation: 3.5%/yr
- Construction period: 3 yrs
- Fixed Capital Cost: $34.80M
- Other capital cost: $22.44M
- Total As-Spent Cost (TASC): $70.73M
Estimated Revenue & Operating Cost

<table>
<thead>
<tr>
<th>Annual Cost Component (con)</th>
<th>Cost or Revenue ($000/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL RAW MATERIAL COSTS</td>
<td>$50,330</td>
</tr>
<tr>
<td>TOTAL LABOR COST</td>
<td>$3,780</td>
</tr>
<tr>
<td>TOTAL UTILITY COST</td>
<td>$1,452</td>
</tr>
<tr>
<td>EQUIP MAINTENANCE COST</td>
<td>$1,679</td>
</tr>
<tr>
<td>TOTAL OPERATING COST</td>
<td>$57,241</td>
</tr>
<tr>
<td>TOTAL REVENUE ($0.80/lb)</td>
<td>$97,874</td>
</tr>
</tbody>
</table>
Estimated Rate of Return

Assumptions:

- 3% annual inflation costs and products
- 20 year operating life
- 15 year depreciation, double declining balance
- 2019 costs

<table>
<thead>
<tr>
<th>Internal Rate of Return (IRR)</th>
<th>Selling Price, $/lb</th>
</tr>
</thead>
<tbody>
<tr>
<td>31%</td>
<td>$0.80</td>
</tr>
<tr>
<td>21%</td>
<td>$0.69</td>
</tr>
<tr>
<td>16%</td>
<td>$0.64</td>
</tr>
</tbody>
</table>
Met Project Success Criteria

Success Criteria

- ≥80% of liquified coal can be converted to polyols: Achieved 80-89%
- The properties of at least one coal-derived PU foam are acceptable for higher value (over $5,000/MT) foams: Achieved
- The return on investment (ROI) is at least 12%/year; Estimated at 30+% at product selling price 20% below current market price
Market Benefits

- Worldwide PU foam market is over $80 billion/year and growing at 10%/yr in 2018
- US PU foam market ~ $20 billion/year with similar growth
- Advantageous properties through use of coal—as demonstrated in prior work
 - Satisfying the US demand for PU foam for insulation consume 4,000 MT per day (1.3 million MT/yr) of coal; 5.2 million MT/yr for worldwide PU foam demand
- PU foam is widely produced and used in USA, and this project has support from mterra and MLB Molded Plastics
- Coverts low cost coal to high value PU foam (solid) products
- Fixes fossil-based carbon in solid products, reducing carbon footprint
- Known conversion chemistry from other higher priced feedstocks
- Drop-in replacement of current PU components
Path To Market

- Exploring potential commercialization partners
 - Producer of coal-derived polyols
 - Manufacturers of rigid and/or flexible foams
- Easiest path to market is partner with foam-formulators to assess product performance for drop-in replacement

Courtesy: MLB; http://mlbproducts.net/mlb5_009.htm
Concluding Remarks

• Demonstrated the feasibility of converting coal to polyurethane (PU) foam, meeting the success criteria of at least 80% conversion of coal carbon to PU foam carbon with a high (30+%) internal rate of return (IRR)

• Process seems applicable to both bituminous and sub-bituminous coals

• Produced 47 polyols from coal, using various test conditions, including replicates

• Foams from coal initially determined to have performance equivalent to industrial standard

• Bench-scale, continuous system ready to scale-up the coal-to-polyol process to TRL 5

• Project discussions with two potential commercialization partners have been quite positive; open to other potential partners
Acknowledgements

- Cost share provided by Ohio Coal Development Office (OCDO)
- Commercialization guidance being provided by MLB
- Dan Garbark; Battelle: Bench-scale testing
- Jeff Cafmeyer; Battelle: PU foam characterization
- Russ Smith; Battelle Subcontractor: Process scale-up and TEA
- Darwin Argumedo; Battelle: Process simulation and TEA support
- Kathryn Johnson; Battelle: Deputy Project Manager