EERC. UND UNIVERSITYOF.

Energy & Environmental Research Center (EERC)

LABORATORY-SCALE COAL-DERIVED GRAPHENE PROCESS

DOE–NETL 2021 Integrated Project Review Meeting – Advanced Coal Processing Webinar April 27, 2021

Alexander Azenkeng, Ph.D. Senior Research Scientist, Advanced Energy Systems

© 2021 University of North Dakota Energy & Environmental Research Center.

PROJECT GOAL

The goal is to develop a technological process for converting U.S. coals into high-value solid carbon products such as graphene and high-grade graphite.

PROJECT PARTNERS

WHAT IS GRAPHENE?

Graphene is a 2D carbon material with a thickness of one atom.

Graphene Quantum Dots

Graphene sheet

- Graphene oxide (GO)
- Reduced graphene oxide (rGO)
- Graphene nanosheets (GNS)
- Graphene nanoplatelets (GNP)
- Few-layer graphene (FLG)

GRAPHENE APPLICATIONS BY INDUSTRY

Aerospace

Agriculture

Automotive

Electronics

Industrial / Manufacturing

Fluid Handling

Medical / Pharmaceutical

Marine

Mining

Nuclear

Oil & Gas

Go Further

FORD MEDIA CENTER

News Multimedia Vehicles Mobility Media Kits People Contacts Lincoln

Home > News > Cell Phones, Sporting Goods, And Soon, Cars: Ford Innovates With "Miracle" Material, Power

CELL PHONES, SPORTING GOODS, AND SOON, CARS: FORD INNOVATES WITH "MIRACLE" MATERIAL, POWERFUL GRAPHENE FOR VEHICLE PARTS By end of 2018

ADVANCED SCREEN DISPLAY AND ENERGY STORAGE

Advanced Screen Displays

Next-Generation Samsung QD-Pixel Application

Higher-Capacity Battery Material

Samsung's "Graphene Ball" for Li ion batteries with up to 5x faster charging speed and 45% more capacity.

PROJECT STRUCTURE AND SCOPE OF WORK

- Task 1.0 Project Management
- **Task 2.0** Coal Pretreatment and Equipment Fabrication/Acquisition
- Task 3.0 Graphitization of Treated Coals

- **Task 4.0** Exfoliation of Graphite to Graphene
- Task 5.0 Techno-Economic Analysis
- Task 6.0 Analysis of Product Target Markets and Technology Gaps

Critical Challenges. Practical Solutions.

PRELIMINARY RESULTS

- Advanced coal cleaning
- Deoxygenation of coals
- Graphene quantum dots

COAL DEMINERALIZATION – PHYSICAL CLEANING

- -35-mesh crush (bituminous)
- -30-mesh crush (anthracite)
- Mix with 1.5-sg solution (bituminous)
- Mix with 1.8-sg solution (anthracite)
- Recover and rinse with DI water

COAL DEMINERALIZATION – CHEMICAL CLEANING

- ¹/₄-inch crush (lignite, subbituminous)
- -35-mesh crush (bituminous)
- -30-mesh crush (anthracite)
- Treat with HCI at 70°C overnight
- Recover and rinse with DI water

COAL ASH REDUCTIONS

FTIR SPECTRA FOR LIGNITE

FTIR SPECTRA FOR SUBBITUMINOUS COAL

FTIR SPECTRA FOR BITUMINOUS COAL

FTIR SPECTRA FOR ANTHRACITE

COAL DEOXYGENATION OF REACTIONS

Typical Test Run Profile

OXYGEN CONTENT OF COAL RESIDUE

O₂ Increase During Cleaning Process

O₂ Reduction During Autoclave Reactions

ANALYSIS OF GASES FROM AUTOCLAVE REACTIONS

Component, %	Lignite	Subbituminous	Bituminous	Anthracite
H ₂	11.3	9.3	52.7	80.9
H_2S	0.4	tr	tr	tr
CO ₂	87.6	86.9	45.6	19.0
CO	0	2.2	0	0
CH_4	0.2	0.8	0.9	0

INCREASE IN COAL Btu

Side benefit from coal deoxygenation is increase in Btu.

GRAPHENE QUANTUM DOTS (GQDs) FROM RAW AND CLEAN COAL SAMPLES

Samples from left to right: lignite, subbituminous, bituminous, anthracite. Pairs: raw, clean.

UV FLUORESCENCE IMAGES OF GQDs

GQDs from Raw Coal Samples

GQDs from Clean Coal Samples

Samples from left to right: lignite, subbituminous, bituminous, anthracite.

UV FLUORESCENCE SPECTRA OF GQDs

Sample	Raw	Clean
	λ _{max}	λ _{max}
Lignite	488	503
Subbituminous	502	515
Bituminous	513	520
Anthracite	621*	624*

- Excitation at 395 nm
- No peak for anthracite
- *Excited at 550 nm

3D UV FLUORESCENCE MAP FOR ANTHRACITE

EM Wavelength(nm)/EX Wavelength(nm)

Anthracite needs to be excited in the visible region between 500 and 600 nm to observe maximum fluorescence intensity.

ANTHRACITE FLUORESCENCE SPECTRA AT 395 AND 550 nm

UV-Vis SPECTRA OF GQDs FROM LIGNITE

Poorly developed second peak in raw compared to clean sample.

UV-Vis SPECTRA OF GQDs FROM SUBBITUMINOUS COAL

UV-Vis SPECTRA OF GQDs FROM BITUMINOUS COAL

UV-Vis SPECTRA OF GQDs FROM ANTHRACITE

Abs.

CONCLUSIONS AND LESSONS LEARNED

- Coal ash has an impact on the quality of GQDs, with more serious effects on lignite-derived GQDs.
- Coal oxygen content reductions of 8%–25% have been demonstrated, with a corresponding increase in Btu.
- UV fluorescence of GQDs shows a progressive red shift from lignite-derived GQDs to anthracite.
- Anthracite GQDs can be excited by visible radiation.
- Lignite produces the bluest-emitting GQDs.

ACKNOWLEDGMENTS

Funding for this project is provided by:

- U.S. Department of Energy National Energy Technology Laboratory (NETL) under Cooperative Agreement No. DE-FE0031881, within the Advanced Coal Processing research area.
- North Dakota Industrial Commission Lignite Research Program.
- North American Coal Corporation.

EERC. UN NORTH DAKOTA.

Alexander Azenkeng, Ph.D. Senior Research Scientist Advanced Energy Systems aazenkeng@undeerc.org 701.777.5051 (phone) Energy & Environmental Research Center University of North Dakota 15 North 23rd Street, Stop 9018 Grand Forks, ND 58202-9018

www.undeerc.org 701.777.5000 (phone) 701.777.5181 (fax)

