

Capillary-driven Condensation for Heat Transfer Enhancement in Steam Power Plants Project ID: DE-FE0031677 Yajing Zhao, Samuel Cruz, and Evelyn N. Wang Department of Mechanical Engineering, MIT Thomas G. Lestina Heat Transfer Research Inc

2

Reentrant cavity

ATIONAL

TECHNOLOGY

Project Description and Objectives

Motivation

- Steam power plants are responsible for the largest amount of water^[1] withdrawn from U.S. water bodies:
- HTC_{condenser} ↑, power ↑, Q_{consum, water} ↓ Boiler (furnace) Turbine Steam Transmission l ines pitcher plant inspired design Transformer lubricant infused surface^[2] graphene coating^[3] reentrant surface^[4] Condenser Condenser Cooling Water [2] Wong, T. et al. (2013) [3] Preston, D. et al. (2015) [4] Wilke, K. et al. (2018) [1] Dieter, C.A. *et al.*(2018) U.S. DEPARTMENT OF Massachusetts Institute of

Technology

Industrial condensers rely on conventional filmwise condensation:

Scalability and robustness remain challenging for dropwise condensers:

Project Description and Objectives

Proposed Concept—Capillary-Driven Thin-Film Condensation

Filmwise condensation with enhanced thermal conductivity & controlled condensate film thickness

- Hierarchical surface consisting of a robust hydrophobic membrane and high thermal conductivity wick
- Vapor transports through membrane pores and condenses at the wick-membrane interface
- Capillary pressure at the membrane-wick interface provides additional driving-force to push condensate from the wick to an exit port for condensate removal

Massachusetts Institute of

Project Description and Objectives

Technology Benchmarking

 Several wicking structures with hydrophobic coatings have been investigated to enhance condensation heat transfer

Challenges

- Coupling between driving force (capillary pressure) and viscous resistance
- Non-robust hydrophobic coating
- Non-scalable approach
- Limited to no experimental characterization

[1] Oh, J. *et al.* (2018) [2] Anderson, D. *et al.* (2012) [3] Ölçeroğlu, E. *et al.* (2017) [4] Liu, K. *et al.* (2018)

Massachusetts

Institute of

Project Description and Objectives

Proposed Concept—Capillary-Driven Thin-Film Condensation

Key Advantages

- Decouples driving force $(P_{cap} \sim 2\sigma/r_p)$ and viscous resistance (κ)
- Reduces thermal resistance by constraining condensate film thickness in a high thermal conductivity wick

Institute of

- Improves robustness with robust hydrophobic membrane materials
- Enables potential for scalability

Approach

Model Development

Design parameters: <u>Wick</u>: permeability, thickness, porosity, thermal conductivity <u>Membrane</u>: pore size, porosity, thickness, thermal conductivity

Surface Fabrication

- Fabrication of highly defined geometries w/ MEMS
- Fabrication of scalable and robust surfaces w/ commercially available materials

Experiment

- Experimentally characterize highly defined geometries to validate model
- Experimentally demonstrate HTC enhancement w/ scalable surface designs

High-Performance Design Utilizing Highly Defined Geometry

- Developed a finite element heat transfer model using COMSOL
 - Utilized well-defined geometry for systematic understanding of physics
 - Performed parametric studies to better understand factors that drive performance
 - Performed **global optimizations** to select high performance rational designs

present case: micropillar wick, through-pore porous membrane

High-Performance Design Utilizing Highly Defined Geometry

• Performed parametric studies to better understand factors that drive performance

Wick

- HTC1 with denser wicks:
 - (*l* constant) HTC \uparrow as $d \uparrow$
 - (d constant) HTC \uparrow as $l \downarrow$
- HTC \uparrow with thinner wicks i.e., $h \downarrow$

Membrane

- HTC \uparrow generally as $t_m \downarrow$ and $\phi_m \uparrow$
- HTC ↑ as d_p ↑ due to less vapor transport resistance; However P* ↓ as d_p ↑ such that the membrane floods when P* < 0

*All computations are at 5K subcool

pressure budget: $P^* = (P_{cap} - \Delta P_{wick})/P_{cap}$

High-Performance Design Utilizing Highly Defined Geometry

- Performed global optimization to select high-performance rational designs
- Selected designs within a pressure budget $P^* > 0.3$ to avoid flooding

Structure Fabrication of Highly Defined Geometry

- Developed novel fabrication method to validate model
 - Potential applications in silicon vapor chamber technology
- Demonstrated feasibility of fabrication approach at small scale
- Next steps: scale up device and experimentally validate model

 $---- = C_4 F_8$ hydrophobic layer (Bosch Process)

NATIONAL ENERGY TECHNOLOGY LABORATORY

Cu mesh

Scalable Surfaces for Capillary-Driven Condensation

Wick layer materials selection

Massachusetts

Institute of Technology

- Commercially available and hydrophobic
- Easy to bond with wick layer
- Well-defined pore size (model validation)
- Other materials being considered for <u>robust hydrophobicity</u>:
 - polymer-infused porous copper
 - electrospun hydrophobic membranes

hydrophobized copper mesh

Cu mesh

 $d_{\rm p}/$

μm

80

39

11

d_{wire}/

μm

50.8

11.4

5.6

size

200

500

1500

NATIONAL ENERGY TECHNOLOGY LABORATORY

cm

1500 mesh

Scalable Surfaces for Capillary-Driven Condensation

Surface design and fabrication

Model prediction for T_v =45°C , T_b =42°C: q_{Nu} =50 kW/m²

 κ/m^2

5E-

 $\delta_{\rm m}$

112

5

5

Cu foam

 ϕ_{w}

0.7

 $\delta_{\rm w}/$

um

220

500 µm

Massachusetts

Institute of Technology q (kW/

m²)

280

290

280

P*

0.54

0.89

3 samples with different d_p were fabricated via diffusion bonding and hydrophobized

 $\phi_{\rm m}$

0.35

0.6

0.44

- Model predicts a >5x HTC enhancement
- 200-mesh sample floods more easily

500 mesh

200 mesh

Scalable Surfaces for Capillary-Driven Condensation

Experimental setup & testing

- Experimental setup for condensation HTC characterization with industrial-level vapor conditions
- Flooding/bursting of droplets occurred—attributed to local defects in coating/mesh
- HTC measurements being conducted and will be compared to model prediction (>5x expected)

Massachusetts

Institute of

Preparing Project for Next Steps

End Goals of the Project

- Scalable and robust capillary-driven condensers for HTC enhancement
- Model framework to guide the rational design of capillary-driven condensers

Technology-to-Market Path

- Knowledge of combining micro-structured wicks and hydrophobic membrane developed during the project can be directly employed in industrial condensers
- Remaining challenges include:
 - Fabrication of porous metal wicks on tube condensers
 - Integration of structured metal wick with hydrophobic membrane layer
 - f condenand water
- ongoing experiments

- Design of exit port strategies for the drainage of condensed water
- Industry collaborator: Heat Transfer Research Inc. to provide testing services for the condenser designs in industrial conditions
- Potential research: new fabrication strategies to make structured wicks and membranes bonded in one step; exit port design for other applications (e.g., information encryption)

Massachusetts Institute of

Technoloav

Market Benefits/Assessment

Integrating capillary-driven condensers into existing industry

Thermo-economic Evaluation for a typical 950 MW fossil fueled power plant^[1]

Estimated material costs to modify an existing condenser with 23,150 tubes (made of 90/10 cupronickel alloy) with dimensions D_0 =28.6 mm and L=13.4 m are shown below:

- Porous copper powder wick (0.2mm thick)
- PVDF membrane (pore size ~1 µm)
 - Alternative materials: PTFE, PP

Material	Material Cost	Required Amount	Total Cost
Sintered copper powder ($\Phi = 70\%$)	135 [\$/kg]	34963 [kg]	\$ 4.72 Million USD
PVDF membrane	400 [\$/m ²]	27872 [m ²]	\$11.15 Million USD
Fabrication cost (assuming $C_{\text{Mater}}/3$)	-	-	\$ 5.29 Million USD
Total	-	-	21.16 Million USD

Massachusetts

Institute of Technology

[1] Webb, R.L.(2010)

Market Benefits/Assessment

Porous Cu foam and PVDF membrane modified condensers

Thermo-economic Evaluation for a typical 950 MW fossil fueled power plant^[1]

Item	Plain Condenser	Capillary-driven Condenser	Unit
Boiler heat input Q _h	2,223	2,223	MW
Condenser water T_{in}	20	20	°C
Condenser water T_{out}	30	30	°C
Condenser saturation temperature	38.95	34.20	°C
Condenser external HTC	8.183	46.127	kW/m ² K
Condenser overall HTC	3.426	5.226	kW/m ² K
Condenser heat rejection/MW	1,273	1,195	MW
Condenser water volume flow rate	30.53	28.66	m³/s
Reduced condenser water flow rate	-	1.87	m³/s
Turbine output $W_{\rm t}$	950	1,028	MW
Increased power output	-	78	MW
Capital value of increased generation	-	7.8E+07	\$/year
Tube modification cost	-	2.12E+07	\$
Simple payback on increased generation	-	0.27	year

Massachusetts Institute of

Technology

[1] Webb, R.L.(2010)

Summary

- **NET**NATIONAL ENERGY TECHNOLOGY LABORATORY
- Developed HTC models based on the concept of capillary-driven condensation
- Fabricated highly-defined geometry and scalable surfaces in parallel
- Ongoing experiments for HTC characterization and model validation
- Expecting a 5x HTC for durable condensation under industrial settings and 8x for highly defined geometries

Massachusetts Institute of

Technology

Acknowledgement

We gratefully acknowledge funding support from the National Energy Technology Laboratory (NETL) of the U.S. Department of Energy with Richard Dunst as project manager.

Samuel Cruz

Yajing Zhao

Electrospin PVDF on porous Cu

Preliminary fabrication: electrospin PVDF-HFP on porous copper

Intrinsic hydrophobic
Scalable
Potential to bond robustly upon heating

Diffusion Bonded Hierarchical Cu

