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Motivation

» Industrial condensers rely on
conventional filmwise condensation:

prevalent in ‘ =5-7x HTC
s industry; 2508 OfE Sshown in lab))
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» Steam power plants are responsible for
the largest amount of watert*! withdrawn

from U.S. water bodies:
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» Scalability and robustness remain
challenging for dropwise condensers:
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[3] Preston, D. et al.(2015) [4] Wilke, K. et al.(2018)

[1] Dieter, C.A. et al.(2018) [2] Wong, T. et al.(2013)
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Filmwise condensation with enhanced thermal conductivity &
controlled condensate film thickness

Robust Hydrophobic Membrane vapor T, P,

High Thermal Conductivity— \L i \L i \l,
High Porosity Wick hydrophobic membrane " ..
P,

Condenser Tube P>
Cooling Water
Condensate Shedding Port

Condensate

condenser substrate b

 Hierarchical surface consisting of a robust hydrophobic membrane and high
thermal conductivity wick

* Vapor transports through membrane pores and condenses at the wick-membrane
Interface

 Capillary pressure at the membrane-wick interface provides additional driving-force
to push condensate from the wick to an exit port for condensate removal
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Technology Benchmarking

 Several wicking structures with hydrophobic coatings have been investigated to

enhance condensation heat transfer
Hydrophoblc layer
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Amphiphilic

Inverse opals
Hydrophobic Coating

Ambiphilic Microjructurés.
!
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: [3] —ﬂ— Anodic Aluminum Oxide  [4]

Challenges
« Coupling between driving force (capillary pressure) and viscous resistance
* Non-robust hydrophobic coating
* Non-scalable approach
 Limited to no experimental characterization

[1] Oh, J. et al. (2018) [2] Anderson, D. et al. (2012) [3] Olgeroglu, E. et al. (2017) [4] Liu, K. et al.(2018)
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Proposed Concept—Capillary-Driven Thin-Film Condensation

Robust Hydrophobic Membrane vapor T, P,

High Them_mal Cpnductivity— \L % 4/ J‘) \l, *. \l \l,
High Porosity Wick hydrophobic membrane Exit
P,

Condenser Tube P>
Cooling Water
Condensate Shedding Port

Condensate enser sub:

Key Advantages

» Decouples driving force (P ,,~20/r,) and viscous resistance (k)

* Reduces thermal resistance by constraining condensate film thickness in a high
thermal conductivity wick

* Improves robustness with robust hydrophobic membrane materials
« Enables potential for scalability
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Approach

Model Development Surface Fabrication

nvironmental To Vacuum Water
b Pump  Reservoir
7
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« Developed a finite element heat transfer model using COMSOL

« Utilized well-defined geometry for systematic understanding of physics
« Performed parametric studies to better understand factors that drive performance
« Performed global optimizations to select high performance rational designs

« Device geometry

Tva }
P"“p\uu I AR SRR ﬂun}l’ux RN S Y R AR AR Huit
Pcap :: "
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wau 4 COMSOL unit cell unit cell

present case: micropillar wick, through-pore porous membrane
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 Performed parametric studies to better understand factors that drive performance
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« Performed global optimization to select high-performance rational designs
« Selected designs within a pressure budget P* > 0.3 to avoid flooding

%10°
18 Fog - - —
o Q L N U
X' 1.6 S °© o | *
o o) o) I o
E o ? 0?1l o o
514 o O 1
E o © o o © :oooc:- o
@o12F o1
o = .
S i © 0% © %oo0 %: © e ©
O
4] o O% 8' o o0 o
— (o] o
D08 8 8 | 8 g
= O Gblca G%D oo c?
e o o o o
= 0.6 © o :OQ & o %1
= - | GO ODO (o]
® ———p'=
T 04F P =03 | © %J%%[g
————— Dropwise I 8 a2e
0.2 ' : | ' Byl s
-1 -0.5 0 0.5 1

P* = (Pcap - prick)/Pcap

S. DEPARTMENT OF

NERGY

top view schematic of optimal
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Wick design

« d/l=0.6

e d=20um
e [ =333um

Membrane design
* dp,=1um

e t,=05um

« ¢y, =0.2

« ~8x HTC enhancement expected at 5K subcool
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Structure Fabrication of Highly Defined Geometry

« Developed novel fabrication method to validate model top view SEM
» Potential applications in silicon vapor chamber technology

« Demonstrated feasiblility of fabrication approach at small scale

« Next steps: scale up device and experimentally validate model

a. SiN, d. Deep Reactive lon Etch
|
AllIRIImIIE
b. Photoresist Isotropic lon Etch hydrophoblc Iayer cross-section SEM
—— m=mr=im (Bosch Process)
PR
C. Pattern photoresist
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» Wick layer materials selection

k = : :
’ equ;;lm o K.y Of different porous metal wick
+_
[ ks kil ML ST |
® @ ® ®
uncovered- microgrooves sintered sintered foams
microgrooves covered by mesh fibers powders

» Membrane layer materials selection
« Commercially available and hydrophobic
. Easy to bond with wick layer hydrophobized
« Well-defined pore size (model validation) copper mesh
« Other materials being considered for robust hydrophobicity:
« polymer-infused porous copper
 electrospun hydrophobic membranes
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Scalable Surfaces for Capillary-Driven Condensation

» Surface design and fabrication
Model prediction for T,=45°C ,T,=42°C: qy,=50 kW/m?
Cu mesh Cu foam

d./

i dwire/ p 2 5w/
sSize am am bm 0, kIm? ¢ am
200 50.8 80 035 112 280 0.54
500 114 39 06 5 51'51' 07 220

1500 5.6 11 0.44 5

* 3 samples with different d, were fabricated
via diffusion bonding and hydrophobized

« Model predicts a >5x HTC enhancement

« 200-mesh sample floods more easily
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Experimental setup & testing

cooling water '

.

I\
N

« Experimental setup for condensation HTC characterization with industrial-level vapor conditions
* Flooding/bursting of droplets occurred—attributed to local defects in coating/mesh
« HTC measurements being conducted and will be compared to model prediction (>5x expected)
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« Scalable and robust capillary-driven condensers for HTC enhancement

« Model framework to guide the rational design of capillary-driven condensers

Technology-to-Market Path

« Knowledge of combining micro-structured wicks and hydrophobic membrane developed during
the project can be directly employed in industrial condensers
* Remaining challenges include:
« Fabrication of porous metal wicks on tube condensers
* Integration of structured metal wick with hydrophobic membrane layer ongoing experiments
» Design of exit port strategies for the drainage of condensed water

 Industry collaborator: Heat Transfer Research Inc. to provide testing services for the condenser
designs in industrial conditions

» Potential research: new fabrication strategies to make structured wicks and membranes
bonded in one step; exit port design for other applications (e.g., information encryption)
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Thermo-economic Evaluation for a typical 950 MW fossil fueled power plant!]

Estimated material costs to modify an existing condenser with 23,150 tubes (made of 90/10 cupronickel
alloy) with dimensions D_,=28.6 mm and L=13.4 m are shown below:
« Porous copper powder wick (0.2mm thick)

« PVDF membrane (pore size ~1 ym)
 Alternative materials: PTFE, PP

Material Material Cost Required Amount Total Cost
Sintered copper powder (P = 70%) 135 [$/kg] 34963 [kg] $ 4.72 Million USD
PVDF membrane 400 [$/m?] 27872 [m?] $11.15 Million USD
Fabrication cost (assuming Cy,/3) - - $ 5.29 Million USD
Total - - 21.16 Million USD

[1] Webb, R.L.(2010)
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Thermo-economic Evaluation for a typical 950 MW fossil fueled power plant!]

ltem Plain Condenser Capillary-driven Condenser  Unit
Boiler heat input Q,, 2,223 2,223 MW
Condenser water T, 20 20 °C
Condenser water T, 30 30 °C
Condenser saturation temperature 38.95 34.20 °C
Condenser external HTC 8.183 46.127 kKW/m?2K
Condenser overall HTC 3.426 5.226 kW/m?K
Condenser heat rejection/MW 1,273 1,195 MW
Condenser water volume flow rate 30.53 28.66 m3/s
Reduced condenser water flow rate - 1.87 m3/s
Turbine output W, 950 1,028 MW
Increased power output - /8 MW
Capital value of increased generation - 7.8E+07 $lyear
Tube modification cost - 2.12E+07 $
Simple payback on increased generation - 0.27 year

[1] Webb, R.L.(2010)
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* Developed HTC models based on the concept of capillary-driven condensation
« Fabricated highly-defined geometry and scalable surfaces in parallel
« Ongoing experiments for HTC characterization and model validation

« Expecting a 5x HTC for durable condensation under industrial settings and 8x for
highly defined geometries

We gratefully acknowledge funding support from the
National Energy Technology Laboratory (NETL) of the
U.S. Department of Energy with Richard Dunst as
project manager.
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Preliminary fabrication: electrospin PVDF-HFP on porous copper
* Intrinsic hydrophobic « Scalable -+ Potential to bond robustly upon heating

Signal A = ok n..
s ores I G20 CMSE
LColumn Moda = Dapt of Field




Diffusion Bonded Hierarchical Cu
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