

Co-Gen Wastewater Treatment for Coal-Fired Energy Plants

NETL Virtual Project Review Meeting DE-FE0031669 September 17, 2020

Co-Gen Wastewater Treatment for Coal-Fired Energy Plants Project

- Type of Contract:
 - DOE Co-Op (DOE/NETL)
- Period of Performance:
 - October, 2018 to March, 2021
- Total Contract Value:
 - \$748.8K PLUS \$187.2K Cost Share

Produced Water Proof-of-Concept Test

Produced Water (Inlet), Condensed steam (Outlet)

Project Objectives

- Show clear, economic solution for FGD wastewater treatment supported by detailed analyses and trade studies
 - Review system configuration options
 - Select an optimized solution
- Complete experiments to document the solubility, transport and/or capture of Critical Pollutants of Concern (CPoC) species
 - Liquid and gas phase
 - Information will be essential to guide work on the first objective and determine economic options for CPoC removal

Project Approach

- Innovative process will reduce the net cost of water treatment
 - Generate power to offset capital investment and operational expenses
 - Portion of the wastewater stream will be heated and filtered and then used as a working fluid in a turbine
- Verify concept makes economic sense
 - Complete system modeling and economic assessment of options
 - System study and economic evaluation will define the most attractive system configuration
- Address a key implementation risk
 - Investigate additives in the case that some CPoC are not readily separated from the steam stream
 - Complete Filter Testing and Analysis
 - Size/Design/Procure/Fabricate Test System

Hardware Assembly

Filter Vessel

Control System

Nitrogen Heater

Quench Vessel

Testing Summary – Simulated FGD Water

- Focused on Effluent Limitation Guidelines from the 2015 Rule
 - Hg & Se added As, Nitrates, other pollutants in later tests
- Completed 12 simulated water filtering tests
 - Examined three nozzles and three filters
 - Selected filter and nozzle for actual FGD water testing
- Typically captured >83% of the water and solids (vapor small/not measured)
- Optimized test apparatus through simulated water testing.
- Typical TDS results Before ~27,000 ppm; After ~234 ppm
 - Se meets release criteria
 - Hg does not meet release criteria very stringent
 - As met criteria one test to date
 - Nitrates higher than release criteria
- Water available for re-use in the facility reduce fresh water needed
- First FGD water test planned for 9/15

Solids Summary Broad size distribution good for candle filter

Summary of Effluent Results Mercury Analysis

			Hg Gas Phase	
		Hg Gas Phase	With Guard	
	Synthetic water	(sorbent), ug/L	(sorbent), ug/L	%
	analyzed, mg/L	gas	gas	Reduction
Test 2	0.022	0.000721	-	-
Test 3	0.0224	0.000970	-	-
Test 4	0.3	0.0000672	-	-
Test 5	0.29	0.0000299	-	-
Test 7	0.22	0.00116	-	-
Test 9	0.0219	0.0000784	0.0000223	71.56%
Test 10	0.237	0.0045806	0.0000828	98.19%
Test 11	0.0669	0.0027643	0.0000759	97.25%

- Water and solid samples indicate Hg in vapor form as feared/expected
- Mercury content rose after Test 7 due to passivation of test equipment.
 Began testing effectiveness of an activated carbon bed to reduce mercury vapor emissions.
 - Carbon bed reduced mercury in the vapor phase by up to 98%.

Summary of Effluent Results Selenium Analysis

	Synthetic	Process
	water	Water
	analyzed,	analyzed,
	mg/L	mg/L
Test 1	1.54	< 0.01
Test 2	1.29	< 0.003
Test 3	1.63	0.014
Test 4	0.41	0.0033
Test 5	0.48	0.00395
Test 7	3.86	< 0.0025
Test 9	2.81	0.00251
Test 10	2.47	0.617
Test 11	5.00	0.014

- Significant reduction in Selenium
 - Typically two-to-three orders of magnitude
 - Highlighted tests met release criteria of 0.0075 mg/L (2015 Rule)

Next steps

- Run the three FGD samples (3-4 tests)
- Additional analysis on solids particle size
- Post processing of effluent to address Hg content
- Complete analysis of results