Regional Analysis of Dry Cooling Retrofits Using IECM

Haibo Zhai* and Ed Rubin, Carnegie Mellon University

*Now at University of Wyoming
Disclaimer and Acknowledgments

• This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

• The authors would like to thank Eric Grol (NETL), and Marc Turner (KeyLogic) for their input and assistance in performing this work. Team KeyLogic’s contributions to this work were funded by the National Energy Technology Laboratory under the Mission Execution and Strategic Analysis contract (DE-FE0025912) for support services.
Motivation

• Thermoelectric power plants are a major source of freshwater withdrawals and consumption in the U.S.

• Increasing water stress in arid regions or during dry seasons has driven some states to restrict freshwater use by power plants.

• Future capacity expansion in these regions can be constrained by water availability (and exacerbated by climate change).

• Evaporative emissions from wet cooling towers are typically the largest source of water consumption at electric power plants.
Project Objectives

- Estimate the potential savings in water consumption that would result from retrofitting dry cooling systems at existing coal-fired power plants with wet cooling systems in a specified region.
- Estimate the associated costs of these retrofits.
- Identify the potential for a shortfall in net generating capacity due to the increased energy requirements of dry cooling.

All impacts to be evaluated at each electrical generating unit (EGU) on a monthly and annual average basis, with results aggregated to the regional level.
• The study region includes two states: Arizona and New Mexico. Existing coal-fired units with wet cooling tower systems are:

• Plants in Arizona:
 - Cholla (2 units)
 - Apache Station (1 unit)
 - Coronado (2 units)
 - Springerville (4 units)

• Plants in New Mexico:
 - Escalante (1 unit)
 - San Juan (2 units)

Total = 6 locations and 12 units analyzed
Existing Coal-Fired EGUs with Wet Towers in Arizona and New Mexico*

<table>
<thead>
<tr>
<th>State</th>
<th>New Mexico</th>
<th></th>
<th>Arizona</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Escalante</td>
<td>San Juan</td>
<td>Cholla</td>
<td>Apache</td>
</tr>
<tr>
<td>Plant ID</td>
<td>87_B_1</td>
<td>2451_B_1</td>
<td>113_B_3</td>
<td>160_B_3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>113_B_4</td>
<td>6177_B_U1B</td>
</tr>
<tr>
<td>Study ID</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>Unit ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Online type</td>
<td>Subcritical</td>
<td>Subcritical</td>
<td>Subcritical</td>
<td>Subcritical</td>
</tr>
<tr>
<td></td>
<td>Escalante</td>
<td>San Juan</td>
<td>Cholla</td>
<td>Apache</td>
</tr>
<tr>
<td>Nameplate capacity (MW)</td>
<td>257</td>
<td>369.0</td>
<td>555.0</td>
<td>312.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>414.0</td>
</tr>
<tr>
<td>Annual net heat rate (Btu/kWh)</td>
<td>10,740</td>
<td>11,232</td>
<td>11,649</td>
<td>12,526</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11,799</td>
</tr>
<tr>
<td>Parasitic load (% of MWg)</td>
<td>7.1</td>
<td>7.8</td>
<td>5.8</td>
<td>7.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.8</td>
</tr>
</tbody>
</table>

Air Pollution Controls

<table>
<thead>
<tr>
<th></th>
<th>NOx (in-furnace)</th>
<th>NOx (post-combustion)</th>
<th>Mercury</th>
<th>Particulates</th>
<th>SO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>√</td>
<td>none</td>
<td>√</td>
<td>√</td>
<td>Wet FGD</td>
</tr>
<tr>
<td></td>
<td>√</td>
<td>none</td>
<td>√</td>
<td>√</td>
<td>Dry FGD</td>
</tr>
<tr>
<td></td>
<td>√</td>
<td>none</td>
<td>√</td>
<td>√</td>
<td>Wet FGD</td>
</tr>
<tr>
<td></td>
<td>√</td>
<td>none</td>
<td>√</td>
<td>√</td>
<td>Wet FGD</td>
</tr>
<tr>
<td></td>
<td>√</td>
<td>none</td>
<td>√</td>
<td>√</td>
<td>Wet FGD</td>
</tr>
<tr>
<td></td>
<td>√</td>
<td>none</td>
<td>√</td>
<td>√</td>
<td>Wet FGD</td>
</tr>
<tr>
<td></td>
<td>√</td>
<td>none</td>
<td>√</td>
<td>√</td>
<td>Wet FGD</td>
</tr>
<tr>
<td></td>
<td>√</td>
<td>none</td>
<td>√</td>
<td>√</td>
<td>Wet FGD</td>
</tr>
<tr>
<td></td>
<td>√</td>
<td>none</td>
<td>√</td>
<td>√</td>
<td>Dry FGD</td>
</tr>
</tbody>
</table>

*As of 2017
Monthly Net Heat Rate of Existing Coal-Fired Units with Wet Towers
Monthly Temperature Trend at Climate Monitoring Stations Nearest Each Plant

Air Dry-Bulb Temperature (°F)

Month of 2017

Springerville /Coronado
Apache Station
Cholla
San Juan
Escalante
Research Approach

• Use the IECM to model each unit with a wet cooling system; estimate its current monthly and annual water consumption, and the levelized cost of electricity generation over its remaining life

• Repeat the unit-level analysis assuming retrofit of a new dry cooling system (air cooled condensers, ACC)
 • Update the IECM thermodynamic and cost models for ACC based on a recent NETL study of dry cooling system performance, capital cost, and operating & maintenance costs

• Use these results to calculate the dry cooling system water savings, cost per gallon of water saved, and net MW capacity reduction at each plant; aggregate these results to regional totals and averages
Modeling Coal-Fired Units in IECM

Free IECM download at: www.iecm-online.com
Key Assumptions for Unit-Level Analysis

- Dry cooling system size is based on annual average ambient conditions
- Monthly plant heat rate and parasitic load with dry cooling are adjusted based on monthly average dry bulb air temperature
- Dry cooling capital cost is amortized over 30 years or remaining EGU life (based on a 50 year life)
- Base case assumes IECM water price and no capital cost premium for retrofits
- Monthly fuel use and operating hours are same for pre- and post-retrofit cases

See two NETL reports for details of all modeling assumptions

Plant-Level Parametric Cooling Technology Models

Regional Analysis of Dry Cooling Retrofits Using IECM

Haozhi Zhai, Edward S. Rubin
June 2014

April 3, 2020
Key Results for Existing Coal-Fired EGUs with Wet and Dry Cooling Systems

Water Consumption Intensity

Levelized Cost of Electricity

Regional average water consumption falls by 92.5%

Regional average cost of electricity increases by 12.4%
Cost per Gallon of Water Saved

Cost of Reduced Water Consumption vs. Annual Water Savings

Regional average cost = $9.6/kgal saved

100% = 14.5 billion gal/yr

Cumulative Annual Water Consumption Saved (% of current regional total)

Regional Cost Sensitivity to Water Price and Retrofit Factor

Base Case

Cost of Water Consumption Saved ($/kgal)

Cost of Water Consumption Saved ($/kgal)

Water Price ($/kgal)
Changes in Net Regional Capacity after Dry Cooling Retrofits

• On an annual basis, the estimated reduction in net regional capacity is 32 MW, or 0.8% of total net capacity.

• On a monthly basis the change in net regional capacity varies from:
 • +8 MW to -79 MW, or
 • +0.2% to -2.0% of net capacity
 • The largest decreases in capacity (and water consumption) occur in the month of July.

These decreases in net regional capacity can be offset by increases in unit-level capacity factors.
Conclusions

- Replacing wet cooling tower systems with dry cooling systems can substantially reduce power plant water consumption in dry, arid regions.
- There are tradeoffs in terms of increased cost and reductions in net generating capacity, especially during summer months.
- This study estimated the magnitude of these water reduction benefits and associated costs for coal-fired power plants in a two-state region of the western U.S.
- Additional plant-level data and analysis are needed to refine the estimates presented here, or to extend them to shorter time periods.
Thank you

rubin@cmu.edu
hzhai@uwyo.edu