Solutions for Today

Options for Tomorrow

2020 Water Technologies Project Review Meeting

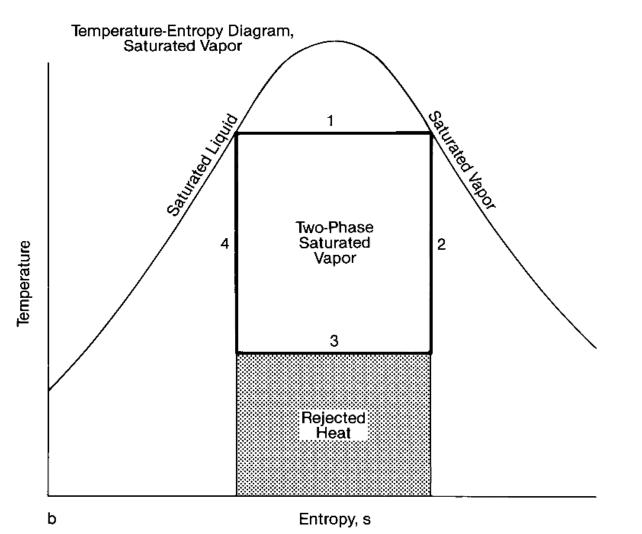
J.S. DEPARTMEN

October 1, 2020

Eric Grol Energy Systems Analyst National Energy Technology Laboratory

- 1. Why is condenser research important?
- 2. Condenser research relevance to FE's mission
- 3. Standardized condenser research and analysis guidance
- 4. On Working Collaboratively
- 5. Other NETL/SEA water analysis work

- Improves power cycle efficiency
- Reduces air emissions (CO₂, SO₂, NOx, PM, etc.) on Lb/MWh basis
- Reduces wet cooling tower water consumption (less waste heat discharged to the atmosphere at the cooling tower)
- Can be applied to any fossil generation source (coal or natural gas combined cycle)
- It's a Fossil Energy research priority



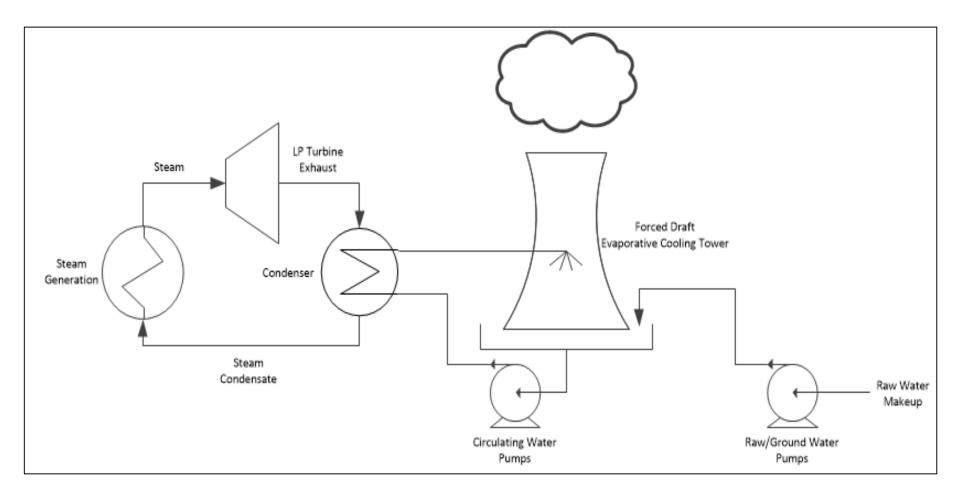
$$\eta = 1 - \frac{T_C}{T_H}$$

- T_c = temperature of heat sink
- T_H = temperature of heat source
- Improve cycle efficiency by increasing steam temperature, or reducing temperature at which heat is rejected

"Status of Technology Development for Supercritical, Ultrasupercritical, and Advanced Ultrasupercritical Rankine Cycles," March 10, 2016

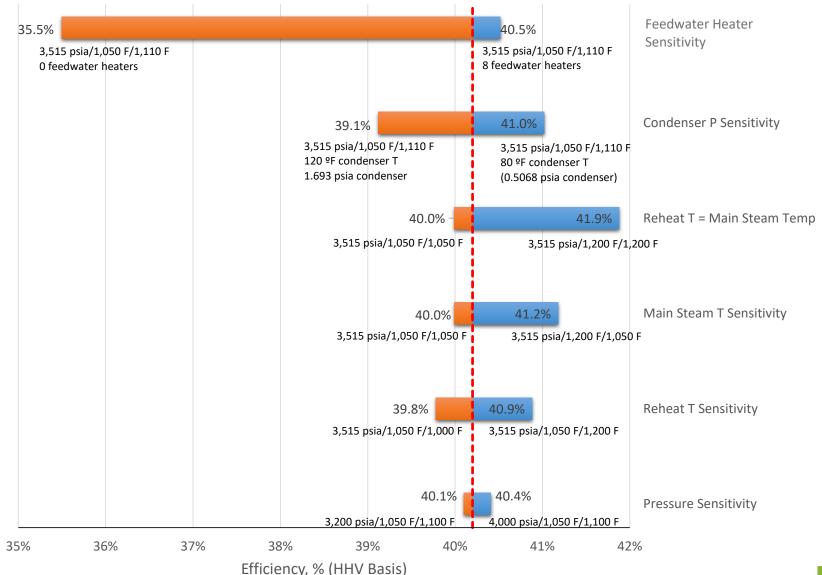
- Condenser pulls a vacuum, allowing for conversion of more steam heat to work
- Without a condenser, power plant would operate much less efficiently

Steam Exhaust Conditions Comparison¹


	Condenser at Atmospheric Conditions	Condenser at Vacuum
LP Turbine Exhaust Pressure	14.7 psia	0.98 psia
Steam Saturation Temperature	212 °F	101 °F
LP Steam Discharge Enthalpy	1,150 Btu/lb	~1,105 Btu/lb
Net System Efficiency (HHV)	33.4%	40.3%

CROSSCUTTING TECHNOLOGY RESEARCH

Condensers in Power Generation



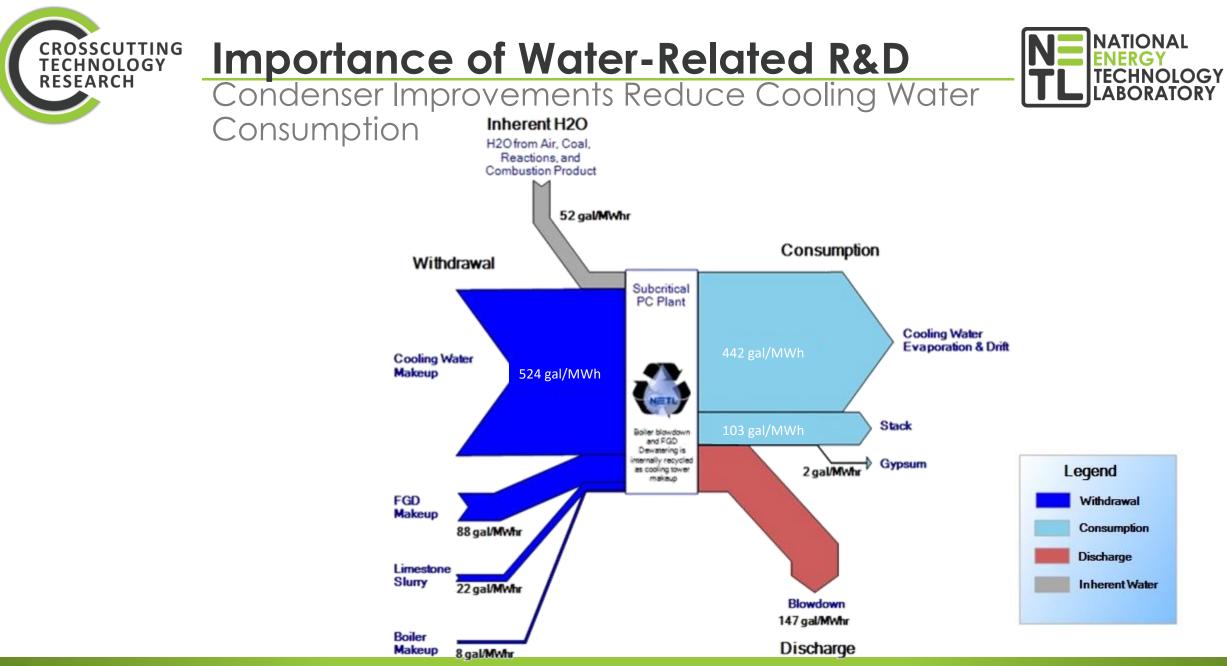
Impact of Condenser on Efficiency CROSSCUTTING

RESEARCH

"Status of Technology Development for Supercritical, Ultrasupercritical, and Advanced Ultrasupercritical Rankine Cycles," March 10, 2016

Relevance to FE's Mission

- Condenser research is relevant to FE's mission in the following ways:
 - 1. Safely and cost-effectively enable environmental stewardship of fossil energy-based conversion systems¹
 - "Creating a viable technology for the global marketplace requires ensuring that emissions from power generation, including CO₂, are at low levels and that water used to remove low-temperature waste heat (which often represents more than 50 percent of energy consumed by a power plant) is minimized while maintaining cost-competitiveness."¹
 - 2. Condenser improvements are a potential compliance strategy for EPA's Affordable Clean Energy rule


 Improve efficiency of existing coal-fired power plants from 31% (2017 baseline) to 32.5%

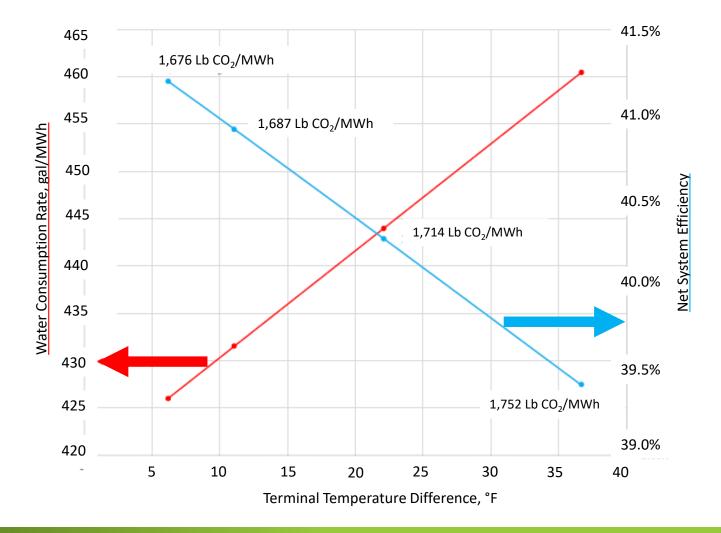
CROSSCUTTING Office of Clean Coal Strategic Vision

- Improve environmental performance (CO₂, SO₂, NOx, etc) of transformative, next generation power systems by improving efficiency
- Improve water efficiency and reduce fresh water use in thermoelectric power plants

Subcritical Pulverized Coal Unit Water Use

• The Affordable Clean Energy (ACE) Rule:

- 1. Is a federal regulation that limits emissions of CO_2 from existing (<u>NOT</u> new) coalfired power plants in the United States
- 2. EPA must base CO_2 emission reductions on the performance of the <u>B</u>est <u>System of</u> <u>E</u>mission <u>R</u>eduction (BSER)
 - A "system of emission reduction" can be a piece of add-on control technology, or a method of operation
- 3. EPA's suite of BSER options includes improvements to the power plant's condenser, which improves generation efficiency (and reduces water consumption)



Importance of Water-Related R&D

12

Affordable Clean Energy Rule – Heat Exchanger Improve

Condenser improvement example: as terminal temperature difference \downarrow , CO₂ emissions and water consumption rates \downarrow

ROSSCUTTING

ECHNOLOGY

ESEARCH

"NETL Crosscutting Program Research Guidance – Condensers and Wastewater Treatment Projects"

Standard Condenser Research Guidance N= NATIONAL ENERGY

TEC

logy

- NETL issued standardized analysis guidance for dry cooling¹, FGD wastewater treatment²
- Provide suggested conditions for analysis (ambient conditions, wastewater compositions, etc.) so that research is done on a common basis
- Establish minimum reporting requirements
- Existing condenser guidance already available in previous NETL studies

Condenser Analysis Guidelines

Suggested Ambient Conditions for Analysis¹

Ambient dry bulb, °F	59
Ambient wet bulb, °F	51.5
Relative Humidity, %	60
Cooling Water Temperature, °F	60

Process Parameters for Surface Condensers²

	Parameter Value	Range	Notes
Pressure, psia	0.982	0.43 – 5.8	Operating pressure depends on coolaing water temperature. Design parameter is for ISO condition cooling water
Terminal Temperature Difference, °F	21	21 – 23	TTD higher than typical to account for lack of summer design condition

Cost and Performance Baseline for Fossil Energy Plants Volume 1: Bituminous Coal and Natural Gas to Electricity Quality Guidelines for Energy System Studies: Process Modeling Design Parameters

- Purpose of condenser research to reduce sink temperature (want to discharge heat at the lowest temperature possible)
- Low TRL work (materials characterization) is highly important but NETL needs to be able to quantify the R&D benefit – let's work collaboratively to figure out how to do this
 - Change in thermal heat transfer coefficient?

• For those projects with host sites, could reporting requirements include change in turbine backpressure?

- Analysis Guidelines for FGD Wastewater Treatment from Existing Sources
- Analysis Guidelines for Dry Cooling R&D
- <u>Techno Economic Analysis and Evaluation of Wet FGD Wastewater</u> <u>Treatment Processes at Existing Plants</u>
- <u>Cost and Performance Impact of Dry and Hybrid Cooling on Fossil Energy</u> <u>Power Systems</u>

Contact Information

Eric Grol

412-386-5463

Eric.grol@netl.doe.gov

Please don't hesitate to reach out!

