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Expected outcomes

• Achieve TRL 5 technology 
maturity of end-to-end 
trainable AI learning system 
for fault detection and root 
cause analysis

• Validate AI learning system 
with data from a coal-fired 
power plant

• Demonstrate advantages 
comparing with state-of-the-
art technologies

• Publicize anonymized training 
data 

Develop deep analysis net with causal embedding for coal-fired power plant fault detection and 
diagnosis (DANCE4CFDD), a novel end-to-end trainable artificial intelligence (AI)-based multivariate time 
series learning system for flexible and scalable coal power plant fault detection and root cause analysis
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Project objectives

Anticipated benefits:
• Applicability to a broad range of asset types and plant 

configurations for improving coal-fired power plant 
reliability

• High scalability—reduce development time by 
eliminating the need for manual and time-consuming 
domain expert feature engineering
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Multiple manual touch points for model update

Data source

Machine Learning 
model [Support 
Vector Machine, 
Random Forest, 
Neural Network]

Conventional data 
driven approach

Pre-processing

Retrainable with new 
data for model update

GE DANCE4CFDD AI 
Learning System

Hand crafted features 
[variance, mean, 

peaks, etc.]
Feature selection 

[PCA, ICA]

Motivation: Existing asset health management solutions 
have limited adaptability. Therefore, there is a critical 
need for a well-designed end-to-end solution that is 
applicable to a wide range of applications by leveraging 
large amounts of historical normal operation data from 
existing coal plants.

Technology Innovation: a novel end-to-end trainable 
artificial intelligence (AI)-based multivariate time series 
learning system for flexible and scalable coal power plant 
fault detection and root cause analysis.
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Schedule and progress 
Program Activities

Year 1 Year 2

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

Task 1: Program Management
Deliverable: Project management plan
Deliverable: Technology maturation plan
Deliverable: Final project report 

Task 2: Subject matter expert support
2.1: Support data interpretation 

2.2: Provide domain support for experiment design & result review
Task 3: Prioritize failure modes & gather data, with focus on boiler section

3.1: Identify target failure modes 

3.2: Simulate, gather, anonymize plant data for normal & targeted faulty conditions

Milestone: Failures modes selected; needed data gathered/generated
Deliverable: Report on targeted failure modes & data summary

Task 4: Build first version of DANCE4CFDD system
4.1: Design & develop individual modules 

4.2: Integrate & test first version system
4.3: Milestone: Created first version system for experiment & study
4.4: Deliverable: Report on system modules 

Task 5: Conduct initial experiment with plant data & iterate AI methods
5.1: Design experiment & performance measure based on plant data

5.2: Conduct initial experiments with plant data

Milestone: Proposed AI system shows state-of-art performance 
Deliverable: Report on performance of proposed AI system  

Task 6: Refine AI approach & conduct thorough experiments
6.1: Experiment with alternative strategies on AI approach 

6.2: Conduct thorough experiments & compare with state-of-the-art methods

Milestone: Finalize AI approach & model architecture 
Deliverable: Report on comparative study & the finalized AI approach   

Task 7: Validation data generation & run-time environment creation
7.1: Simulation / real-world setup 
7.2: Generate / Gather & anonymize data for final testing

7.3: Create AI model run-time environment & deploy trained AI models 

Milestone: Validation environment created  
Deliverable: Report on validation environment / data
Go/No-Go Decision Point: Risk assessed for final validation  

Task 8: Validation & performance evaluation
8.1: Perform validation & evaluate performance

8.2: Prepare data for submission to NETL’s Energy Data eXchange (EDX) 
Milestone: Complete final validation
Deliverable: Validation report & data submission to NETL’s Energy Data eXchange (EDX)

Denotes Milestone Denotes Deliverable Denotes Go/No-Go Decision Point

ü

ü

Status

Ongoing

ü Benchmarking on public datasets
Initial experiments on plant data

Completed with some delay

Completed as planned
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Current state of DANCE4CFDD system

Core model libraries

Supporting functions: 
- Time series data construction for training and testing
- Performance evaluation functions
- Other utility functions 

Carry research studies: 
- Plant data study
- Secure Water Treatment (SWaT) dataset
- Tennessee Eastman Process (TEP) benchmark dataset
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• Unsupervised learning: only 
normal operation data is used

• Supervised learning: both normal 
operation data and faulty data are 
available
• Few shot learning: normal 

operation data with a small 
sample of faulty data 

• Majority of data is under 
normal operation, only small 
number of faulty events to learn 
from

Industry needs Approaches

Research focus
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learn spatial and 
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Network setting: Long 
Short-Term Memory 
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Network input data 
process: vector 

embedding for discreate 
variables  
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Benchmarking with public datasets

Two datasets: 
• Secure Water Treatment (SWaT) testbed dataset *  
• Tennessee Eastman Process (TEP) dataset ^

Dataset characteristics – similar to real-world coal plant data: 
• Represent a complex plant 
• Multivariate time series measurement
• Simulate anomalies during system operation

* https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_info/
^ https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/6C3JR1

https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_info/
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/6C3JR1
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Attack # Start Time End Time Attack Point Start State Attack Actual Change
1 28/12/2015 10:29:14 10:44:53 MV-101 MV-101 is closed Open MV-101 Yes

2 28/12/2015 10:51:08 10:58:30 P-102 P-101 is on where as P-102 is off Turn on P-102 Yes

3 28/12/2015 11:22:00 11:28:22 LIT-101 Water level between L and H Increase by 1 mm every second No

4 28/12/2015 11:47:39 11:54:08 MV-504 MV-504 is closed Open MV-504 Yes

5 28/12/2015 11:58:20 No Physical Impact Attack

7 days of normal operation
4 days of 41 episodes of attack
36 attacks are physical, treated as faults
1/second sampling
24 sensor + 27 actuator tags 

SWaT testbed dataset

Reference: Goh, J., Adepu, S., Junejo, K. N., & Mathur, A. (2016). A Dataset to Support Research in the De- sign of Secure Water Treatment Systems. In CRITIS. 
doi: 10.1007/978-3-319-71368-7-8 
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Training data: 
500 runs of normal operation data
20 faults, each has 500 runs
500 samples per run, 25 hours of operation

Testing data:
500 runs of normal operation, 960 samples / run
500 runs of faulty operation,  960 samples / run, fault 
is injected at 160th sample

41 sensor + 11 actuator tags 

1572 S. Yin et al. / Journal of Process Control 22 (2012) 1567– 1581

Fig. 1. The Tennessee Eastman process.

was further introduced in [6],  see Table 2. As no prior knowl-
edge about the mathematical model of TE process is available,
the PM–FD system shall be designed only based on the process
data.

Table 2
Descriptions of process faults in TE process.

Fault number Process variable Type

IDV(1) A/C feed ratio, B composition
constant

Step

IDV(2) B composition, A/C ration
constant

Step

IDV(3) D feed temperature Step
IDV(4) Reactor cooling water inlet

temperature
Step

IDV(5) Condenser cooling water inlet
temperature

Step

IDV(6) A feed loss Step
IDV(7) C header pressure loss-reduced

availability
Step

IDV(8) A, B, and C feed composition Random variation
IDV(9) D feed temperature Random variation
IDV(10) C feed temperature Random variation
IDV(11) Reactor cooling water inlet

temperature
Random variation

IDV(12) Condenser cooling water inlet
temperature

Random variation

IDV(13) Reaction kinetics Slow drift
IDV(14) Reactor cooling water valve Sticking
IDV(15) Condenser cooling water valve Sticking
IDV(16) Unknown Unknown
IDV(17) Unknown Unknown
IDV(18) Unknown Unknown
IDV(19) Unknown Unknown
IDV(20) Unknown Unknown
IDV(21) The valve fixed at steady state

position
Constant position

Table 3
Design parameter selection.

Approaches PCA DPCA ICA MICA PLS TPLS SAP

Design parameters PCs = 9 PCs = 17 ICs = 9 ICs = 9 LVs = 6 LVs = 6 s = 13

The data sets given in [6] are widely accepted for PM–FD study,
in which 22 training sets (including normal operation condition)
were collected to record the process measurements for 24 opera-
tion hours. Correspondingly, 22 generated (on-line) test data sets
were generated including 48 h plant operation time, in which the
faults were introduced after 8 simulation hours. By considering the
time constants of the process in closed loop, the sampling time
was selected as 3 min. These data sets can be downloaded from
http://brahms.scs.uiuc.edu.

According to the original TE code, a Simulink code provided
by the Ricker [43] is available to simulate the plant’s closed-loop
behavior. Based on the simulator, the operation modes, measure-
ment noise, sampling time and magnitudes of the faults can be
easily modified and thus its generated data sets can be more help-
ful for PM–FD comparison study. Note that the control structure
utilized in [43] is different from the one in [6], which may  lead
some differences in later simulation study. In our analysis, the
base operating mode of TE process is considered to be identical
with the case in [6].  The simulator can be downloaded from
http://depts.washington.edu/control/LARRY/TE/download.html.

4. Comparison study based on TE

All the discussed data-driven PM–FD methods, including PCA,
DPCA, PLS, TPLS, MPLS, FDA, ICA, MICA and SAP, will be applied to
TE process for a comparison study. Two generally used indices, i.e.
fault detection rate (FDR) and false alarm rate (FAR), are mainly
considered here for evaluating PM–FD performance [6,32,58].

FDR = No. of samples (J >  Jth|f /= 0)
total samples (f /= 0)

× 100

FAR = No.  of samples (J >  Jth|f = 0)
total samples (f = 0)

× 100

Since the faults in TE as well as other industrial processes
may  occur in any measurement subspaces, which are generally
unknown in practice, a reasonable fault detection logic is based
on joint use of the related test statistics, i.e. if one of the test statis-
tics exceeds threshold, a successful fault detection is achieved. The

TEP benchmark dataset

Reference: S. Yin, S. Ding, A. Haghani, H. Hao, P. Zhang, A comparison study of basic data-driven fault diagnosis and process monitoring methods on the 
benchmark Tennessee Eastman process , Journal of Process Control 22 (2012) 
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Sample based: 
FP = # alarms / total # of normal operation samples
TP = # alarms / total # of faulty operation samples

Operating segment/run based (e.g. a flight or a mission): 
FP = # aggregated alarms / total # of normal operation segments
TP = # aggregated alarms / total # of faulty segments

Plant operation relevant: 
FP = # alarms / total # of normal operation time
TP = # detected faulty events / total # of faulty events

For public dataset study, we 
adopted sample-based 
evaluation for easy comparison 
with literature

Performance evaluation 
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(the last 1 day in our setting) out of the first 7 days of normal
operation period. This will ensure the quality of normal op-
eration data. We refer this as normal hold off measure. The
other way is to treat all the attack data sample as normal op-
eration data as long as they fall outside of the time window
defined above for all the attacks. We refer this as attack data
only measure. As we will discuss in the later section, such
treatment may be prone to issues.

In our experiments, we use both ROC (Receiver operating
characteristic) and PR (Precision-Recall) curve to evaluate
the performance. AUC (Area Under Curve) and Average Pre-
cision are calculated for the overall performance measure.

5.3. Model Settings

After removing all the constant variable by combining the
normal and faulty data, we have 25 continuous variables and
20 discrete variables. In the standard setup, we use all the
variables as inputs to estimate all the continuous variables at
the next time step. In the joint estimation setup, the model
learns to estimate both continuous and discrete variables.

For LSTM, we use 2 layers each with 50 hidden units, fol-
lowed by a linear layer that map the hidden variable to output.
For joint loss with LSTM as the backbone, each discrete vari-
able has a vector length of its cardinality in the output. We
set wce = 1e � 2 in our experiment. We use a time window
T = 120 for both settings.

For CNN, we use 2 layers each with 50 channels of kernel
size of 3, stride of 1, followed by a linear layer that map the
output of the last convolutional layer to the final output, with
time window size of T = 10.

For fully connected neural network, we use 2 layers each with
50 hidden units, followed by a linear layer that map the out-
put of the last layer to the final output, using the same time
window size is T = 10.

5.4. Result and Discussion

The LSTM results are shown in Figure 6. We can see the a big
different between these two measures. With normal data hold
off measure, we almost achieved perfect performance. How-
ever, using attack data only, the performance is not ideal. A
further investigation indicates that that the system may never
restore back to normal operation after some attacks.

As shown in Figure 7, we can see that operation regime has
shifted drastically, thus all models would indicate that almost
all of the operation being abnormal, after P201 starts to os-
cillate between two settings and AIT201 starts to drift from
normal operation regimes.

We thus conducted an experiment of dropping variable A201
for both training and testing. We see a clear improvement on
attack measurement as shown in Figure 8

Figure 6. ROC and PR curve for LSTM

Figure 7. Signal and control operation regime change: red
curve for attack period of time, blue for normal operation;
P201 has maintained constant during normal operation

As far as training loss, we conducted experiments to com-
pare two ways: 1) using all the outputs from the window; 2)
using only the last output. From a estimation error point of
view, it seems that the second way performs better as shown
in Figure 9. Maintaining consistency between training and
inference provides better performance.

In addition, we also demonstrated that joint LSTM achieved
smaller representation error comparing with standard LSTM,
as showed in Figure 10 in the same experiment setting.

For overall performance with attack data only measure, the
different models perform similarly as shown in Table 1, al-
though LSTM with joint loss show some advantages.

Table 1. Fault detection comparison.

Methods AUC Ave Precision
LSTM 0.838 0.768
CNN 0.869 0.788
NN 0.874 0.788
LSTM joint 0.881 0.815
DeepSVDD 0.834 0.748

For an easy comparison with a recent study (Inoue, Yamagata,
Chen, Poskitt, & Sun, 2017) on the same dataset, we also
select the best point solution based on F score. In Table 2, we
compared results with two methods as reported in (Inoue et
al., 2017): DNN and one-class SVM. The DNN method uses
both LSTM and a staged partial estimation of actuator and
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Figure 8. ROC and PR curve for LSTM after dropping A201

Figure 9. Testing error histogram from test normal operation
data. Top: train with loss from the whole window; Bottom:
train with loss from the last output only

sensor measurement for estimating outlier factor. LSTM with
standard setup produce better performance, while a number
of other models in our setup all produced better F scores.

Table 2. Precision and recall select by best F score

Methods Precision Recall F score
Reference DNN 0.98295 0.67847 0.80281

One-class SVM 0.92500 0.69901 0.79628
Ours LSTM 0.99402 0.68635 0.81202

CNN 0.96897 0.67654 0.79677
NN 0.96670 0.72458 0.82831
LSTM joint 0.93730 0.71563 0.81161
DeepSVDD 0.99060 0.63449 0.77353

6. CONCLUSION

In this paper, we described several deep learning meth-
ods for anomaly detection, all of which are formulated as
self-supervised way, i.e., learn the dynamic relationship of
industrial system as an autoregressive model. We intro-
duced a number of techniques for dealing with industrial data
when both discrete settings and continuous measurements are
present. We showed that joint estimation of both continu-
ous and discrete values can reduce estimation error. We also
demonstrated that such an approach improve overall perfor-
mance. We also compared a number of neural network archi-
tectures with a recent study on the same dataset, and showed
that a number of models in our setup produces comparable to
even better results. Due to the major system behavior drifting
after some episodes of attacks in the SWaT dataset, we plan
to conduct experiments using a different dataset as our future

Figure 10. Testing error histogram from test normal operation
data. Top: standard LSTM; Bottom: joint trained LSTM

work to give us better views into the research questions we
have posed.
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Figure 2. Discrete data embedding as input data to backbone
models

4.1. Discrete Input Embedding

In industrial applications, the time series data usually com-
prise of both discrete and continuous values. Sensor mea-
surements are mostly collected as continuous signals, while
control settings can be either continuous or discrete. For dis-
crete data, especially non-ordinal data, a direct normalization
that map these discrete values to a continuous space is rather
arbitrary. To deal with this issue, we propose to learn em-
bedding jointly with the model. This is inspired by neural
language modeling approaches (Bengio, Ducharme, Vincent,
& Jauvin, 2003), in which each word is mapped to a vec-
tor space of fixed size (the vector is called the embedding of
the word). In our case, the embedding is a vector represen-
tation of the underlying discrete variable. These embedding
vectors are included in the model parameters that behave as
regular parameters. They are randomly initialized and then
modified by the training algorithm like the other parameters
in the model. This embedding transformation is illustrated
in Figure 2. For each data sample xt in the time series data,
this embedding transformation is performed first before it is
presented as input to the backbone model.

4.2. Mix Type of Target Variables

In the autoregressive setting, we have the choice to select a
subset of the time series variables to serve as the target. A
common setup is to estimate the measurement variables, i.e.
usually continuous variables. However, it maybe beneficial
to estimate the discrete variables as well. These discrete vari-
ables usually represent control settings. It might be advan-
tageous to have the model to learn a control setting for the
next time step given the current the state. Therefore, we have
investigated two types of target variables in our study: 1) con-
tinuous target variables only; 2) mix type of continuous and
discrete target variables.

The two different settings are mainly different in their loss
configurations. For continuous variables only setting, we use
the mean square error as the loss function. Let xc

t as the
continuous target variables, the loss is simply as in Eq. 1, in
which C is the set of continuous variables.

Lmse =
1

C

X

c2C

1

n
(x̂c

t � xc
t)

2 (1)

For the mix type setting, the loss is a joint of two parts: mean
square error for continuous values and cross entropy for dis-
crete values. In this case, the number of output for each dis-
crete variable is determined by its cardinality. For each dis-
crete variable d, the model output is x̂d

t probability vector
with a length |d|, while the corresponding target variable is
encoded int one-hot vector. In this way, the cross entropy
loss can be applied to these outputs. D is the set of discrete
variables.

Lce = �
X

d2D

X

i2|d|

xdi
t log x̂di t (2)

For continuous variables only setting,, loss L = Lmse. In the
mixed type setting, the total loss is L = Lmse + wceLce, in
which wce is the weight on cross entropy loss. We refer this
as the joint approach in the experiment discussion later.

4.3. Recurrent Neural Network

The RNN network we use involves layers of LSTM and a
linear layer. As show in Figure 3, the input vector is fed to
the LSTM cell one at a time, and there is a linear layer that
maps the LSTM hidden state at each time step to the target
variable.

Figure 3. RNN architecture for autoregressive representation

In the training phase of the LSTM, we have the network to
output all the estimation at each time step. There, we could
use all the outputs in the loss function or selective using only
the last time step output. In testing, only the last time step is
used as an estimation.

4.4. Convolution and Fully Connected Neural Network

For Convolution Neural Network (CNN) and fully connected
Neural Network (NN) , a time series [xt�T , ..., xt�1] with
length of T is the inputs to the network. In the case the CNN,
the input is passed through layers of 1-d convolution. This
is followed by a fully connected layer to map all the features

3

Joint setting: 
autoregressive target 
includes discrete 
variables

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

Figure 2. Discrete data embedding as input data to backbone
models

4.1. Discrete Input Embedding

In industrial applications, the time series data usually com-
prise of both discrete and continuous values. Sensor mea-
surements are mostly collected as continuous signals, while
control settings can be either continuous or discrete. For dis-
crete data, especially non-ordinal data, a direct normalization
that map these discrete values to a continuous space is rather
arbitrary. To deal with this issue, we propose to learn em-
bedding jointly with the model. This is inspired by neural
language modeling approaches (Bengio, Ducharme, Vincent,
& Jauvin, 2003), in which each word is mapped to a vec-
tor space of fixed size (the vector is called the embedding of
the word). In our case, the embedding is a vector represen-
tation of the underlying discrete variable. These embedding
vectors are included in the model parameters that behave as
regular parameters. They are randomly initialized and then
modified by the training algorithm like the other parameters
in the model. This embedding transformation is illustrated
in Figure 2. For each data sample xt in the time series data,
this embedding transformation is performed first before it is
presented as input to the backbone model.

4.2. Mix Type of Target Variables

In the autoregressive setting, we have the choice to select a
subset of the time series variables to serve as the target. A
common setup is to estimate the measurement variables, i.e.
usually continuous variables. However, it maybe beneficial
to estimate the discrete variables as well. These discrete vari-
ables usually represent control settings. It might be advan-
tageous to have the model to learn a control setting for the
next time step given the current the state. Therefore, we have
investigated two types of target variables in our study: 1) con-
tinuous target variables only; 2) mix type of continuous and
discrete target variables.

The two different settings are mainly different in their loss
configurations. For continuous variables only setting, we use
the mean square error as the loss function. Let xc

t as the
continuous target variables, the loss is simply as in Eq. 1, in
which C is the set of continuous variables.

Lmse =
1

C

X

c2C

1

n
(x̂c

t � xc
t)

2 (1)

For the mix type setting, the loss is a joint of two parts: mean
square error for continuous values and cross entropy for dis-
crete values. In this case, the number of output for each dis-
crete variable is determined by its cardinality. For each dis-
crete variable d, the model output is x̂d

t probability vector
with a length |d|, while the corresponding target variable is
encoded int one-hot vector. In this way, the cross entropy
loss can be applied to these outputs. D is the set of discrete
variables.

Lce = �
X

d2D

X

i2|d|

xdi
t log x̂di t (2)

For continuous variables only setting,, loss L = Lmse. In the
mixed type setting, the total loss is L = Lmse + wceLce, in
which wce is the weight on cross entropy loss. We refer this
as the joint approach in the experiment discussion later.

4.3. Recurrent Neural Network

The RNN network we use involves layers of LSTM and a
linear layer. As show in Figure 3, the input vector is fed to
the LSTM cell one at a time, and there is a linear layer that
maps the LSTM hidden state at each time step to the target
variable.

Figure 3. RNN architecture for autoregressive representation

In the training phase of the LSTM, we have the network to
output all the estimation at each time step. There, we could
use all the outputs in the loss function or selective using only
the last time step output. In testing, only the last time step is
used as an estimation.

4.4. Convolution and Fully Connected Neural Network

For Convolution Neural Network (CNN) and fully connected
Neural Network (NN) , a time series [xt�T , ..., xt�1] with
length of T is the inputs to the network. In the case the CNN,
the input is passed through layers of 1-d convolution. This
is followed by a fully connected layer to map all the features
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Figure 2. Discrete data embedding as input data to backbone
models
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maps the LSTM hidden state at each time step to the target
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output all the estimation at each time step. There, we could
use all the outputs in the loss function or selective using only
the last time step output. In testing, only the last time step is
used as an estimation.
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the input is passed through layers of 1-d convolution. This
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Point solution from the P-R curve for 
easy comparison with literature

Point solution represent the highest 
F score 

A N

Validate developed system, demonstrate competitive performance

SWaT data results
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Alternative data split for 
measurement: normal hold off

A

Use last 1 days of normal 
operation as ‘normal’

Data during attack 
window as ‘abnormal’

N A

System operation drifting after 
episodes of attack

Measurement AIT201: ‘abnormal’ operating 
range 

Actuation P201: new operating regime 

Normal 
operation ends

Limitations with SWaT dataset

Reference: Xue, F., Yan, W., Huang, H., Wang, T., Feng, B., Deep anomaly detection for industrial systems: a case study, Annual Prognostics and Health 
Management Conference, 2020 (to appear)
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Our model DAVAC outperforms other unsupervised models in most of the fault types 

* Sun W. et al. Fault Detection and Identification using Bayesian Recurrent Neural Networks, https://arxiv.org/abs/1911.04386 (Preprint, 2019) 

TEP benchmarking (sample based)
Our experiments - unsupervised Reference results from literature* - unsupervised

Fault LSTM TCN
Attention 

LSTM
Transfor

mer CNN NN DAVAC BRNN
r-PCA 
(a=12)

f-PCA 
(a=52)

r-DPCA 
(a=25)

f-DPCA 
(a=104)

1 99.95% 99.96% 99.96% 99.95% 99.95% 99.94% 100.00% 99.75% 99.75% 100.00% 99.75% 99.25%
2 99.10% 99.61% 99.16% 99.00% 99.31% 99.18% 100.00% 99.00% 98.75% 99.12% 98.62% 99.12%
3 5.57% 5.90% 6.07% 5.43% 6.31% 8.09% 5.55% 5.00% 7.00% 19.75% 6.12% 22.25%
4 100.00% 21.26% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 98.88% 100.00% 100.00% 100.00%
5 100.00% 99.78% 100.00% 100.00% 100.00% 100.00% 99.94% 100.00% 32.62% 100.00% 34.50% 100.00%
6 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
7 100.00% 79.61% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
8 98.33% 98.58% 98.34% 98.31% 98.45% 98.39% 100.00% 98.12% 98.00% 98.25% 97.75% 98.38%
9 5.85% 11.16% 6.10% 5.71% 6.46% 7.36% 6.09% 5.00% 7.88% 15.25% 8.87% 21.37%

10 89.94% 58.09% 93.09% 87.98% 97.14% 97.39% 95.85% 87.38% 54.13% 93.50% 55.75% 94.63%
11 86.42% 53.32% 86.42% 83.14% 99.11% 93.92% 100.00% 74.75% 74.25% 87.25% 80.75% 92.75%
12 99.14% 99.58% 99.39% 99.20% 99.22% 99.28% 100.00% 99.75% 99.00% 100.00% 99.25% 100.00%
13 95.85% 99.38% 96.01% 95.84% 96.15% 96.03% 99.69% 95.75% 95.50% 95.75% 95.50% 96.25%
14 99.98% 92.01% 99.98% 99.98% 99.98% 99.98% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
15 5.60% 8.14% 8.89% 5.74% 5.88% 6.28% 9.84% 7.12% 10.62% 26.87% 11.13% 36.63%
16 90.78% 74.80% 92.64% 88.39% 97.19% 97.74% 99.45% 90.38% 46.50% 95.50% 48.50% 97.00%
17 96.49% 96.64% 96.51% 96.47% 96.50% 96.40% 99.89% 96.13% 93.13% 97.75% 94.78% 98.12%
18 94.56% 98.12% 94.69% 94.51% 94.55% 94.54% 98.96% 90.63% 90.38% 91.50% 90.50% 92.87%
19 87.14% 16.54% 86.34% 85.10% 90.43% 89.53% 100.00% 88.25% 25.12% 96.00% 34.00% 99.50%
20 95.92% 80.71% 95.92% 95.83% 95.96% 95.93% 99.57% 78.63% 58.25% 92.13% 61.75% 92.37%

False Positive 5.00% 5.00% 5.00% 5.00% 5.00% 5.00% 5.00% 4.75% 5.00% 4.88% 5.00% 5.00%

Our models: 
Detection and Diagnosis of
Anomaly with Variable
Association Change (DAVAC)

Alternative models (adapted from 
recent neural network architectures):

TCN - Temporal Convolution 
Network
Attention-based LSTM
Transformer architecture
Basic architectures such as LSTM, 
CNN, NN

https://arxiv.org/abs/1911.04386
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Process steps for plant data

Data tags and configuration

Data Loading Training data 
construction

Data source

Events data –
define normal 

operation

Model training

Model running

Time series 
data

Trained
model

Performance 
evaluation

Performance 
report

InInput InTarget InControl SourceName
1 1 5-F-FDR-DMD

5-F-FDR-DSCH-PRS
5-F-FDR-RATE

1 1 5-F-FDR-SPD
5-F-MILL-AMP
5-F-MILL-DP

1 1 5-F-MILL-INT-T
1 1 5-F-MILL-PA-1-F

5-F-MILL-PA-F
1 1 5-F-MILL-PA-T
1 1 5-F-MILL-T
1 1 5F-FDR-SPD-BIAS

Time series 
data

Input: all time series 
measurements as input to model
Target: tags to predict
Control: command and actuation 
measurements 
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Plant data: 
- 16 months, 3994 tags, 1/min time series data 
- NERC GADS report data 

Based on plant events, developed initial priority list

Barry unit 5 plant data experiments

NERC Cause Code Description

9270 WET COAL (OMC) – FEEDER STOPPAGE

270 PRIMARY AIR DUCTS AND DAMPERS

3232 CONDENSER TUBE CLEANING SYSTEMS INCLUDING DEBRIS FILTER

3211 CIRCULATING WATER PUMP MOTORS



18

Barry unit 5 plant data experiments
Experiment setup: 3 month for training; 13 months for evaluation

System Total Events
Detected 

Events (TP)

False Alarms 
/ 13 months  

(LSTM)

False Alarms 
/ 13 months 

(CNN)
Mill A 4 4 48 50
Mill B 2 2 29 34
Mill C 9 9 39 46
Mill D 6 6 22 27
Mill E 1 1 10 8
Mill F 6 6 14 22

WET COAL (OMC) –
FEEDER STOPPAGE: 

CONDENSER TUBE 
CLEANING SYSTEMS 
INCLUDING DEBRIS FILTER: 

CIRCULATING WATER PUMP 
MOTORS: 

InInput InTarget InControl SourceName
1 1 5-F-FDR-DMD

5-F-FDR-DSCH-PRS
5-F-FDR-RATE

1 1 5-F-FDR-SPD
5-F-MILL-AMP
5-F-MILL-DP

1 1 5-F-MILL-INT-T
1 1 5-F-MILL-PA-1-F

5-F-MILL-PA-F
1 1 5-F-MILL-PA-T
1 1 5-F-MILL-T
1 1 5F-FDR-SPD-BIAS

Data tags configuration Performance evaluation

System Total Events
Detected 

Events (TP)

False Alarms 
/ 13 months  

(LSTM)

False Alarms 
/ 13 months 

(CNN)
CWP A 4 4 5 11
CWP B 4 4 3 4

InInput InTarget InControl SourceName
1 1 5-DEBRIS-FLT-A-DP
1 1 5-A-CRC-WTR-PMP-MTR-AMP
1 1 5-A-CWP-MTR-LWG-BRG-T
1 1 5-A-CWP-MTR-UPG-BRG-T
1 1 5-A-CWP-MT-THR-BRG-T
1 1 5-A-CWP-MTR-STAT-1-T
1 1 5-A-CWP-MTR-STAT-2-T
1 1 5-A-CWP-MTR-STAT-3-T

Demonstrated AI learning system on initial plant use cases

Use case
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Concluding remarks

Demonstrated an AI learning system on time series data for fault detection: 
- Applicability to broad range of problems
- Easy to adapt – directly model time series data
- High performance 

Next steps
- Continue experimentation of model architectures and training methods
- Develop model outcome interpretation – diagnosis 
- Conduct study on few shot learning: how to effectively leverage a small sample of 

faulty data
- Study a range of plant use cases – assess real-world utilities and gaps
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Module 3

…

ResNet:
to learn different level of 
univariate nonlinearity

…

fully connected layer:
to compress univariate 
feature

Graph learning layer:
to learn variable 
association 

fully connected chain:
to learn intervariate
nonlinearity 

row-wise regression:
to regress objectives

Detection and Diagnosis of Anomaly with Variable Association Change (DAVAC)

DAVAC network architecture


