

DE-FE0031763: Deep Analysis Net with Causal Embedding for Coal Fired Power Plant Fault Detection and Diagnosis (DANCE4CFDD)

August 26, 2020

Acknowledgement:

This material is based upon work supported by the Department of Energy, National Energy Technology Laboratory under Award Number DE-FE0031763

Disclaimer:

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Project overview

Project update

Algorithm and system development

Benchmarking with public datasets

Initial experiments with plant data

Concluding remarks

NATIONAL ENERGY TECHNOLOGY LABORATORY

Develop deep analysis net with causal embedding for coal-fired power plant fault detection and diagnosis (DANCE4CFDD), a novel end-to-end trainable artificial intelligence (AI)-based multivariate time series learning system for flexible and scalable coal power plant fault detection and root cause analysis

Expected outcomes

- Achieve TRL 5 technology maturity of end-to-end trainable AI learning system for fault detection and root cause analysis
- Validate AI learning system with data from a coal-fired power plant
- Demonstrate advantages comparing with state-of-theart technologies
- Publicize anonymized training data

Project objectives

Motivation: Existing asset health management solutions have limited adaptability. Therefore, there is a critical need for a well-designed end-to-end solution that is applicable to a wide range of applications by leveraging large amounts of historical normal operation data from existing coal plants.

Technology Innovation: a novel end-to-end trainable artificial intelligence (AI)-based multivariate time series learning system for flexible and scalable coal power plant fault detection and root cause analysis.

Anticipated benefits:

- Applicability to a broad range of asset types and plant configurations for improving coal-fired power plant reliability
- High scalability—reduce development time by eliminating the need for manual and time-consuming domain expert feature engineering

Schedule and progress

		1		<u> </u>		
	Drogram Activities	Ye	ear 1		Year 2	- Statuc
	Program Acuvities	QI QZ	Q3 Q4	, QI	Q2 Q3 Q2	Juarus
	Task 1: Program Management					
	Deliverable: Project management plan					
	Deliverable: Technology maturation plan	ΙΥ				T
	Deliverable: Final project report					Y
(7 1. Support data interretation					
	2.1. Support data interpretation					- Ungoing
	Task 3: Prioritize failure modes & gather data, with focus on boiler section		_	-	- T T	
	3.1: Identify target failure modes			1		
Southern Company	3.2. Simulate gather anonymize plant data for normal & targeted faulty conditions			1		
	Milestone: Failures modes selected: needed data anthered/generated					
	Deliverable: Report on targeted failure modes & data summary		•			
	Task 4: Build first version of DANCE4CFDD system)		-
	4.1: Design & develop individual modules					
	4.2: Integrate & test first version system					
	Milestone: Created first version system for experiment & study		4	1 1		· · · · · · · · · · · · · · · · · · ·
	Deliverable: Report on system modules		Ϋ́ Ι			
	Task 5: Conduct initial experiment with plant data & iterate AI methods					1
	5.1: Design experiment & performance measure based on plant data					Be Be
	5.2: Conduct initial experiments with plant data					
	Milestone: Proposed AI system shows state-of-art performance			ا 🔶		l In
	Deliverable: Report on performance of proposed AI system			V		
	Task 6: Refine AI approach & conduct thorough experiments					
	6.1: Experiment with alternative strategies on Al approach					
	6.2: Conduct thorough experiments & compare with state-of-the-art methods					
	Milestone: Finalize Al approach & model architecture				•	
	Deliverable: Report on comparative study & the Jinalized Al approach					4
	Task 7: Validation data generation & run-time environment creation					
\checkmark	7.1: Simulation / real-world setup					
Southern Company 🦳	7.2. Create A model run-time environment & dealey trained A models			1 1		
	Nileste Armoder universite environment de deploy trained Armodels			1		
	Delivershi a: Penost on validation anvisonment (data					
	Go/No-Go Decision Point: Risk assessed for final validation				I X	
	Task 8: Validation & performance evaluation				<u> </u>	
	8.1 Perform validation & evaluate performance			1		
	8.2: Prenare data for submission to NETL's Energy Data eXchange (EDX)					
	Milestone: Complete final validation					
	Deliverable: Validation report & data submission to NETL's Energy Data eXchange (EDX)]		$\dot{\nabla}$
	A Danakas Milastana — — — — — — — — — — — — — — — — — —				1 1	
	• Denotes initestone Venotes Deliverable Venotes Go/No-Go Decision Point			_		

going

Completed with some delay

Completed as planned

Benchmarking on public datasets Initial experiments on plant data

Current state of DANCE4CFDD system

time_series_ai ~/repo/time_series_ai

- examples
- 🔻 🖿 projects
- 🕨 🕨 🕨 🕨 🕨
- 🕨 🖿 swat
- 🕨 Þ 🖿 tep
- 🔻 🖿 ts_ai
 - 🔻 🖿 models
 - 📥 __init__.py
 - ᡖ base_model.py
 - 📥 base_tcn.py
 - 🛛 樻 base_transformer.py
 - 🖧 custom_lstms.py
 - 📥 metric_model.py
 - 📥 rnn_models.py
 - 🛃 tcn_models.py
 - 📥 transformer_models.py
 - 📥 __init__.py
 - 樻 dataset.py
 - 樻 evaluation.py
 - 📥 functions.py
 - 📥 losses.py
 - 👗 modules.py
 - breprocess.py
 - autils.py

- Carry research studies:
- Plant data study
- Secure Water Treatment (SWaT) dataset
- Tennessee Eastman Process (TEP) benchmark dataset

Core model libraries

- Supporting functions:
- Time series data construction for training and testing
- Performance evaluation functions
- Other utility functions

3)

Research focus

NATIONAL ENERGY TECHNOLOGY LABORATORY

Industry needs

 Majority of data is under normal operation, only small number of faulty events to learn from

Approaches

- $f(x_{t-}) \longrightarrow \hat{x}_{t}$ $loss = L(\hat{x}_{t}, x_{t})$ $x_{t-T} \dots x_{t-2} \dots x_{t-1} \mid x_{t}$
- Supervised learning: both normal operation data and faulty data are available

Unsupervised learning: only

normal operation data is used

Few shot learning: normal operation data with a small sample of faulty data

Unsupervised setting

Autoregressive setting: learn spatial and temporal relationship

Network setting: Long Short-Term Memory (LSTM) network as example

Network input data process: vector embedding for discreate variables

Benchmarking with public datasets

Two datasets:

- Secure Water Treatment (SWaT) testbed dataset *
- Tennessee Eastman Process (TEP) dataset ^

Dataset characteristics – similar to real-world coal plant data:

- Represent a complex plant
- Multivariate time series measurement
- Simulate anomalies during system operation

SWaT testbed dataset

7 days of normal operation
4 days of 41 episodes of attack
36 attacks are physical, treated as faults
1/second sampling
24 sensor + 27 actuator tags

Attack #	Start Time	End Time	Attack Point	Start State	Attack	Actual Change
1	28/12/2015 10:29:14	10:44:53	MV-101	MV-101 is closed	Open MV-101	Yes
2	28/12/2015 10:51:08	10:58:30	P-102	P-101 is on where as P-102 is off	Turn on P-102	Yes
3	28/12/2015 11:22:00	11:28:22	LIT-101	Water level between L and H	Increase by 1 mm every second	No
4	28/12/2015 11:47:39	11:54:08	MV-504	MV-504 is closed	Open MV-504	Yes
5	28/12/2015 11:58:20		No Physical Impact Attac	k		

TEP benchmark dataset

Training data:

500 runs of normal operation data 20 faults, each has 500 runs 500 samples per run, 25 hours of operation

Testing data:

500 runs of normal operation, 960 samples / run 500 runs of faulty operation, 960 samples / run, fault is injected at 160th sample

41 sensor + 11 actuator tags

Fault number	Process variable	Туре
IDV(1)	A/C feed ratio, B composition constant	Step
IDV(2)	B composition, A/C ration constant	Step
IDV(3)	D feed temperature	Step
IDV(4)	Reactor cooling water inlet temperature	Step
IDV(5)	Condenser cooling water inlet temperature	Step
IDV(6)	A feed loss	Step
IDV(7)	C header pressure loss-reduced availability	Step
IDV(8)	A, B, and C feed composition	Random variation
IDV(9)	D feed temperature	Random variation
IDV(10)	C feed temperature	Random variation
IDV(11)	Reactor cooling water inlet temperature	Random variation
IDV(12)	Condenser cooling water inlet temperature	Random variation
IDV(13)	Reaction kinetics	Slow drift
IDV(14)	Reactor cooling water valve	Sticking
IDV(15)	Condenser cooling water valve	Sticking
IDV(16)	Unknown	Unknown
IDV(17)	Unknown	Unknown
IDV(18)	Unknown	Unknown
IDV(19)	Unknown	Unknown
IDV(20)	Unknown	Unknown

Reference: S. Yin, S. Ding, A. Haghani, H. Hao, P. Zhang, A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process, Journal of Process Control 22 (2012)

Performance evaluation

Sample based:

FP = # alarms / total # of normal operation samples
TP = # alarms / total # of faulty operation samples

For public dataset study, we
 adopted sample-based
 evaluation for easy comparison
 with literature

Operating segment/run based (e.g. a flight or a mission):

FP = # aggregated alarms / total # of normal operation segments TP = # aggregated alarms / total # of faulty segments

Plant operation relevant:

FP = # alarms / total # of normal operation time
TP = # detected faulty events / total # of faulty events

SWaT data results

ATIONAL TECHNOLOGY

Overall performance comparison

Regular setting: autoregressive target are all continuous variables

$$x_{se} = \frac{1}{C} \sum_{c \in C} \frac{1}{n} (\hat{x_t^c} - x_t^c)^2$$

Joint setting: autoregressive target includes discrete variables

$$L_{mse} = \frac{1}{C} \sum_{c \in C} \frac{1}{n} (\hat{x_t^c} - x_t^c)^2$$

 $L_{ce} = -\sum_{d \in D} \sum_{i \in |d|} x_t^{d_i} \log \hat{x^{d_i}}_t$

 $L = L_{mse} + w_{ce}L_{ce}$

AUC Methods Ave_Precision LSTM 0.838 0.768 CNN 0.869 0.788 NN 0.874 0.788 LSTM joint 0.881 0.815 DeepSVDD 0.834 0.748

Compare with a recent study *

Point solution from the P-R curve for easy comparison with literature

Point solution represent the highest F score

	Methods	Precision	Recall	F score
Reference	DNN	0.98295	0.67847	0.80281
	One-class SVM	0.92500	0.69901	0.79628
Ours	LSTM	0.99402	0.68635	0.81202
	CNN	0.96897	0.67654	0.79677
	NN	0.96670	0.72458	0.82831
	LSTM joint	0.93730	0.71563	0.81161
	DeepSVDD	0.99060	0.63449	0.77353

Validate developed system, demonstrate competitive performance

Limitations with SWaT dataset

Alternative data split for measurement: normal hold off

System operation drifting after episodes of attack

Measurement AIT201: 'abnormal' operating range

Actuation P201: new operating regime

TEP benchmarking (sample based)

Defense recults from literature*

			U	ui experii	ilents - uns	superviseu			Reference	e results in		re - unsu	perviseu
Our models:	Fault	LSTM	TCN	Attention LSTM	Transfor mer	CNN	NN	DAVAC	BRNN	r-PCA (a=12)	f-PCA (a=52)	r-DPCA (a=25)	f-DPCA (a=104)
D etection and Diagnosis of	1	99.95%	99.96%	99.96%	99.95%	99.95%	99.94%	100.00%	99.75%	99.75%	100.00%	99.75%	99.25%
Anomaly with Variable	2	99.10%	99.61%	99.16%	99.00%	99.31%	99.18%	100.00%	99.00%	98.75%	99.12%	98.62%	99.12%
	3	5.57%	5.90%	6.07%	5.43%	6.31%	8.09%	5.55%	5.00%	7.00%	19.75%	6.12%	22.25%
Association Change (DAVAC)	4	100.00%	21.26%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	98.88%	100.00%	100.00%	100.00%
	5	100.00%	99.78%	100.00%	100.00%	100.00%	100.00%	99.94%	100.00%	32.62%	100.00%	34.50%	100.00%
	6	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
Alternative models (adapted from	7	100.00%	79.61%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
Alternative models (adapted nom	8	98.33%	98.58%	98.34%	98.31%	98.45%	98.39%	100.00%	98.12%	98.00%	98.25%	97.75%	98.38%
recent neural network architectures):	9	5.85%	11.16%	6.10%	5.71%	6.46%	7.36%	6.09%	5.00%	7.88%	15.25%	8.87%	21.37%
TCN - Temporal Convolution	10	89.94%	58.09%	93.09%	87.98%	97.14%	97.39%	95.85%	87.38%	54.13%	93.50%	55.75%	94.63%
Notwork	11	86.42%	53.32%	86.42%	83.14%	99.11%	93.92%	100.00%	74.75%	74.25%	87.25%	80.75%	92.75%
Network	12	99.14%	99.58%	99.39%	99.20%	99.22%	99.28%	100.00%	99.75%	99.00%	100.00%	99.25%	100.00%
Attention-based LSTM	13	95.85%	99.38%	96.01%	95.84%	96.15%	96.03%	99.69%	95.75%	95.50%	95.75%	95.50%	96.25%
Transformer architecture	14	99.98%	92.01%	99.98%	99.98%	99.98%	99.98%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
Pasic architectures such as ISTM	15	5.60%	8.14%	8.89%	5.74%	5.88%	6.28%	9.84%	7.12%	10.62%	26.87%	11.13%	36.63%
Dasic di chilectures such as LSTIVI,	16	90.78%	74.80%	92.64%	88.39%	97.19%	97.74%	99.45%	90.38%	46.50%	95.50%	48.50%	97.00%
CNN, NN	17	96.49%	96.64%	96.51%	96.47%	96.50%	96.40%	99.89%	96.13%	93.13%	97.75%	94.78%	98.12%
	18	94.56%	98.12%	94.69%	94.51%	94.55%	94.54%	98.96%	90.63%	90.38%	91.50%	90.50%	92.87%
	19	87.14%	16.54%	86.34%	85.10%	90.43%	89.53%	100.00%	88.25%	25.12%	96.00%	34.00%	99.50%
	20	95.92%	80.71%	95.92%	95.83%	95.96%	95.93%	99.57%	78.63%	58.25%	92.13%	61.75%	92.37%
	False Positive	5.00%	5.00%	5.00%	5.00%	5.00%	5.00%	5.00%	4.75%	5.00%	4.88%	5.00%	5.00%

Our over a simon to unaver any is a d

Our model DAVAC outperforms other unsupervised models in most of the fault types

Process steps for plant data

Data tags and configuration

InInput	InTarget	InControl	SourceName
1		1	5-F-FDR-DMD
			5-F-FDR-DSCH-PRS
			5-F-FDR-RATE
1	1		5-F-FDR-SPD
			5-F-MILL-AMP
			5-F-MILL-DP
1	1		5-F-MILL-INT-T
1		1	5-F-MILL-PA-1-F
			5-F-MILL-PA-F
1		1	5-F-MILL-PA-T
1	1		5-F-MILL-T
1		1	5F-FDR-SPD-BIAS

Input: all time series measurements as input to model Target: tags to predict Control: command and actuation measurements

Barry unit 5 plant data experiments

Plant data:

- 16 months, 3994 tags, 1/min time series data
- NERC GADS report data

Based on plant events, developed initial priority list

NERC Cause Code	Description
9270	WET COAL (OMC) – FEEDER STOPPAGE
270	PRIMARY AIR DUCTS AND DAMPERS
3232	CONDENSER TUBE CLEANING SYSTEMS INCLUDING DEBRIS FILTER
3211	CIRCULATING WATER PUMP MOTORS

Barry unit 5 plant data experiments

Experiment setup: 3 month for training; 13 months for evaluation

Use case

Data tags configuration

WET COAL (OMC) –	
FEEDER STOPPAGE:	

InInput	InTarget	InControl	SourceName
1		1	5-F-FDR-DMD
			5-F-FDR-DSCH-PRS
			5-F-FDR-RATE
1	1		5-F-FDR-SPD
			5-F-MILL-AMP
			5-F-MILL-DP
1	1		5-F-MILL-INT-T
1		1	5-F-MILL-PA-1-F
			5-F-MILL-PA-F
1		1	5-F-MILL-PA-T
1	1		5-F-MILL-T
1		1	5F-FDR-SPD-BIAS

Performance evaluation

System	Total Events	Detected Events (TP)	False Alarms / 13 months (LSTM)	False Alarms / 13 months (CNN)
Mill A	4	4	48	50
Mill B	2	2	29	34
Mill C	9	9	39	46
Mill D	6	6	22	27
Mill E	1	1	10	8
Mill F	6	6	14	22

CONDENSER TUBE CLEANING SYSTEMS INCLUDING DEBRIS FILTER:

CIRCULATING WATER PUMP MOTORS:

InInput	InTarget	InControl	SourceName
1	1		5-DEBRIS-FLT-A-DP
1	1		5-A-CRC-WTR-PMP-MTR-AMP
1	1		5-A-CWP-MTR-LWG-BRG-T
1	1		5-A-CWP-MTR-UPG-BRG-T
1	1		5-A-CWP-MT-THR-BRG-T
1	1		5-A-CWP-MTR-STAT-1-T
1	1		5-A-CWP-MTR-STAT-2-T
1	1		5-A-CWP-MTR-STAT-3-T

System	Total Events	Detected Events (TP)	False Alarms / 13 months (LSTM)	False Alarms / 13 months (CNN)
CWP A	4	4	5	11
CWP B	4	4	3	4

Demonstrated AI learning system on initial plant use cases

Concluding remarks

Demonstrated an AI learning system on time series data for fault detection:

- Applicability to broad range of problems
- Easy to adapt directly model time series data
- High performance

Next steps

- Continue experimentation of model architectures and training methods
- Develop model outcome interpretation diagnosis
- Conduct study on few shot learning: how to effectively leverage a small sample of faulty data
- Study a range of plant use cases assess real-world utilities and gaps

DAVAC network architecture

Detection and Diagnosis of Anomaly with Variable Association Change (DAVAC)

