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Develop deep analysis net with causal embedding for coal-fired power plant fault detection and
diagnosis (DANCE4CFDD), a novel end-to-end trainable artificial intelligence (Al)-based multivariate time
series learning system for flexible and scalable coal power plant fault detection and root cause analysis
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Motivation: Existing asset health management solutions Conventional data
have limited adaptability. Therefore, there is a critical driven approach Multiple manual touch points for model update

need for a well-designed end-to-end solution that is e 1 1 1 )
applicable to a wide range of applications by leveraging

Machine Learning

. . . ! Hand c.rafted features Feature selection model [Supp.ort
large amounts of historical normal operation data from S - »|  lvariance mean, PCaICAl ¥ Vector Machine
existing coal plants. 1 ) ([ NeuralNetwor]
Technology Innovation: a novel end-to-end trainable S
artificial intelligence (Al)-based multivariate time series [ ore-orocessing } 7
learning system for flexible and scalable coal power plant L
fault detection and root cause analysis. GE DANCE4CFDD Al

Learning System

Anticipated benefits:
* Applicability to a broad range of asset types and plant l || Retrainable with new
. . . ] . N J data for model update
configurations for improving coal-fired power plant t |
reliability
* High scalability—reduce development time by
eliminating the need for manual and time-consuming
domain expert feature engineering
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Year 1 Year 2
Program Activities ait|a2]a3|aslai][a2]a3]as Statu S

Task 1: Program Management
Deliverable: Project management plan
Deliverable: Technology maturation plan

Deliverable: Final project report
Task 2: Subject matter expert support

2.1: Support data interpretation 1
22: — — Ongoing

: Provide domain support for experiment design & result review

EPPI2I | i N ask 37 Prioritize failure modes & gather data, with focus on boiler section — .
3.1: Identify target failure modes CO m p I eted W|t h some d e I ay
L Southern Company 3.2: Simulate, gather, anonymize plant data for normal & targeted faulty conditions

Milestone: Failures modes selected; needed data gathered/generated
Deliverable: Report on targeted failure modes & data summary

Task 4: Build first version of DANCE4CFDD system
4.1: Design & develop individual modules
<
Y

4.2: Integrate & test first version system
Milestone: Created first version system for experiment & study

Deliverable: Report on system modules

Task 5: Conduct initial experiment with plant data & iterate Al methods -
5.1: Design experiment & performance measure based on plant data

5.2: Co.nductinitialexperiments with plant data ! | BenChmarklng on pUbIIC dataSEtS
Milestone: Proposed Al system shows state-of-art performance 6 I N Itla I expe rime nts on p I a nt d ata

Deliverable: Report on performance of proposed Al system
Task 6: Refine Al approach & conduct thorough experiments

6.1: Experiment with alternative strategies on Al approach
6.2: Conduct thorough experiments & compare with state-of-the-art methods

Milestone: Finalize Al approach & model architecture
Deliverable: Report on comparative study & the finalized Al approach

EP2 | iicme rover Task 7: Validation data generation & run-time environment creation

RESEARCH INSTITUTE
7.1: Simulation / real-world setup
i Southern Company 7.2: Generate / Gather & anonymize data for final testing

7.3: Create Al model run-time environment & deploy trained Al models
Milestone: Validation environment created

Deliverable: Report on validation environment / data
Go/No-Go Decision Point: Risk assessed for final validation

Task 8: Validation & performance evaluation

v Completed as planned

O<te ™ l<10

8.1: Perform validation & evaluate performance |
8.2: Prepare data for submission to NETL’s Energy Data eXchange (EDX)
Milestone: Complete final validation | *

Deliverable: Validation report & data submission to NETL’s Energy Data eXchange (EDX)
& Denotes Milestone pDenotes Deliverable ODenotes Go/No-Go Decision Point
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Current state of

time_series_ai ~/repoftime_series_ai

examples

projects
plant
swat
tep

ts_ai

models

o init__.py
» base_model.py

» base_tcn.py
» base_transformer.py
» custom_Istms.py
» metric_model.py
» rnn_models.py
» tcn_models.py
o transformer_models.py
o —init__.py
» dataset.py
» evaluation.py
» functions.py
o losses.py
» modules.py
o preprocess.py

o utils.py
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Carry research studies:

- Plant data study

- Secure Water Treatment (SWaT) dataset

- Tennessee Eastman Process (TEP) benchmark dataset

Core model libraries

Supporting functions:

- Time series data construction for training and testing
- Performance evaluation functions

- Other utility functions

L
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Industry needs Approaches
[ )—>%; A
* Majority of data is under  Unsupervised learning: only e f———);———. . loss = L(%¢ x¢)
normal operation, only small normal operation data is used e Tt
number of faulty events to learn
from
s -
* Supervised learning: both normal Fl,) —> 2,
operation data and faulty dataare ~ _______ + o loss = L(xy xp )
available {chg—_T_-; ECIE—_Z___x.f—_l__' ft
* Few shot learning: normal
operation data with a small
sample of faulty data
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Unsupervised setffing
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Autoregressive setting:
learn spatial and
temporal relationship

fxe-) —>X%;

_______________ |
Xt—T - Xt-2 _ X¢—1 1 Xt
T T |

PN
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Network setting: Long
Short-Term Memory
(LSTM) network as

example

Xere1 - X1 X

i t ot
Linear

t t t
hof»{h}»~ —[h}>{h]  LsT™

t t ot

Xt-r - Xe-2 Xt—1
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Network input data
process: vector
embedding for discreate
variables

Xt X¢ input to model

Embedding vector
Categorical H — —
variables

—>

Continuous [f{ ——
variables

Concatenation
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Two datasets:

e Secure Water Treatment (SWaT) testbed dataset *
* Tennessee Eastman Process (TEP) dataset »

Dataset characteristics — similar to real-world coal plant data:
e Represent a complex plant
* Multivariate time series measurement
e Simulate anomalies during system operation
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https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_info/
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/6C3JR1
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Chemical tanks and dosing pumps
. T ey ; | HCL | | NaOCl | | Nacl | P2
7 days of normal operation CPUmor T !
] [ RawWater i ¢ P201 lpzos ¢on5 R :
4 days of 41 episodes of attack DTk LT T r0n A0t cemidnooion | Miter | |
. AIT202, AIT 203
36 attacks are physical, treated as faults T S
) 1 P3 LIT301 ;
1/second sampling R P R T i
© | Uttraviolet (UV) RO Feed RO Feed 1 2| Ultrafiltration |~ UF Feed i
24 sensor + 27 actuator tags || Dechiorinator ‘—"ﬁm, Pump Tank |**; | Unitwp ‘*ﬁ :
| LIT401 i S e~
P T2 Y e[ Nahiso, | P4 |
I:_ T'.'_'.'.'._‘;.‘:T e f'.'_'.'.'._.--.'.. -2 R : UF backwash - UF backwash :
i [ Cartria RO Boost Reverse Osmosis (RO) |- 1ank Pump  |:
! | e Pumps |_> R b P602 |
! P5 AIT503 —p557 1 p || Raw ?err:eate 5 Watleerd !
' ;X—v—)\, an recyd :
P: Permeate RReJect T T T T s s e
Attack # Start Time End Time Attack Point Start State Attack Actual Change
1| 28/12/201510:29:14 10:44:53 MV-101 MV-101 is closed Open MV-101 Yes
2| 28/12/201510:51:08 10:58:30 P-102 P-101 ison where as P-102 is off Turn on P-102 Yes
3| 28/12/201511:22:00 11:28:22 LIT-101 Water level between Land H Increase by 1 mm every second No
4( 28/12/201511:47:39 11:54:08 MV-504 MV-504 is closed Open MV-504 Yes
5| 28/12/2015 11:58:20 No Physical Impact Attack
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- TEP benchmark dataset N=|anova
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Training data:

5 O O f I . d Fault number Process variable Type
runs or normal o pe rat 1on ata IDV(1) A/C feed ratio, B composition Step
constant
20 fa u ItS, eaCh haS 500 I'U nS IDV(2) B composition, A/C ration Step
. constant
500 samples per run, 25 hours of operation IDV(3) D feed temperature Step
IDV(4) Reactor cooling water inlet Step
temperature
IDV(5) Condenser cooling water inlet Step
: . temperature
TEStI ng d ata . IDV(6) A feed loss Step
. IDV(7) C header pressure loss-reduced Step
500 runs of normal operation, 960 samples / run availability
. IDV(8) A, B, and C feed composition Random variation
500 runs of faulty operation, 960 samples / run, fault IDV(9) D feed temperature Random variation
h IDV(10) C feed temperature Random variation
1c 1Nt t IDV(11) Reactor cooling water inlet Random variation
is injected at 160" sample ® Reactor cool
@ ' Q = @ 9 IDV(12) Condenser cooling water inlet Random variation
) g1 Cond e TR temperature .
@ Compressor - @ IDV(13) Reaction kinetics Slow drift
4 1 Se N SO r + 1 1 a Ct u ato r ta gs @_ L @ IDV(14) Reactor cooling water valve Sticking
i r’: | @ IDV(15) Condenser cooling water valve Sticking
% IDV(16) Unknown Unknown
L[ @ IDV(17) Unknown Unknown
‘z(- @ IDV(18) Unknown Unknown
@ Ef @ IDV(19) Unknown Unknown
RL @ IDV(20) Unknown Unknown
<)
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Sample based:
FP = # alarms / total # of normal operation samples For public dataset study, we

TP = # alarms / total # of faulty operation samples 4mmm adopted sample-based
evaluation for easy comparison

with literature

Operating segment/run based (e.g. a flight or a mission):
FP = # aggregated alarms / total # of normal operation segments
TP = # aggregated alarms / total # of faulty segments

Plant operation relevant:
FP = # alarms / total # of normal operation time
TP = # detected faulty events / total # of faulty events

2 ﬁ% U.S. DEPARTMENT OF
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- SWaT data results
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Measurement: ROC and
Precision-Recall

Use last 4 days N A N A

of attack data

1.0 1
0.8 A
0.6 1
0.4 1
0.2
0.0 4

1.0
0.8 4
0.6 1
0.4 1
021
0.0 -

Attack data only

Attack only - N: 391140.0, A: 58658.0

——

~ ROC curve (area = 0.838)

0.0 02 0.4 0.6 08 10

~— Precision-Recall curve (Ave precision = 0.768)

0.0 0.2 0.4 0.6 0.8 10

Overall performance
comparison

Regular setting:
autoregressive target
are all continuous
variables

1 1, -
Lmse = 5 ;E(xg —1‘5)2

Joint setting:
autoregressive target
includes discrete

Lee =— Z Z :cfi log x:iit

deD ie|d|

L = Lmse + wceLce

variables
Methods | AUC | Ave Precision
LSTM 0.838 1 0.768
CNN 0.869 | 0.788
NN 0.874 | 0.788

LSTM joint | 0.881 | 0.815
DeepSVDD | 0.834 | 0.748

TL TECHNOLOGY
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Compare with a recent
study *

Point solution from the P-R curve for
easy comparison with literature

Point solution represent the highest

F score

| Methods | Precision | Recall | F score
Reference | DNN 0.98295 0.67847 | 0.80281
One-class SVM | 0.92500 0.69901 | 0.79628

Ours LST™M 0.99402 0.68635 | 0.81202
CNN 0.96897 0.67654 | 0.79677

NN 0.96670 0.72458 | 0.82831

LSTM joint 0.93730 0.71563 | 0.81161

DeepSVDD 0.99060 0.63449 | 0.77353

Validate developed system, demonstrate competitive performance

U.S. DEPARTMENT OF




Limitations with SWaT dataset
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Alternative data split for
measurement: normal hold off

System operation drifting after

[.

p

Use last 1 days of normal
operation as ‘normal’

Normal
operation ends

Data during attack
window as ‘abnormal’

N I A A

episodes of attack

Measurement AIT201: ‘abnormal’ operating
range

Actuation P201: new operating regime

— normal
260 —— attack
240
Normal hold off Attack data only -
)
ﬁ 220
normal hold off - N: 86279, A: 58658 Attack only - N: 391140.0, A: 58658.0 <
10 10 200
0.8 1 0.8 //P// 180
0.6 1 0.6
0.4 4 0.4 0 200000 400000 600000 800000
024 02 2.0
001 ~— ROC curve (area = 0.999) 00 ~ ROC curve (area = 0.838) 1 — normal
00 02 04 06 08 10 00 02 04 06 08 10 1.8 attack
1.04 10
1.6
094 08 S
08 0.6 & 1.4
04
0.7 4 02 1.2 1
0.6 ~—— Precision-Recall curve (Ave precision = 0.999) 0‘0 ~—— Precision-Recall curve (Ave precision = 0.768) 10
T T T T T : T T T T T -V 7 - - T - T
0.0 0.2 0.4 0.6 08 1.0 0.0 0.2 0.4 0.6 0.8 10 0 200000 400000 600000 800000
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Our experiments - unsupervised Reference results from literature* - unsupervised

Attention Transfor r-PCA f-PCA r-DPCA  f-DPCA

Our models: Fault LSTM TCN LSTM mer CNN NN DAVAC | BRNN  (a=12) (a=52) (a=25) (a=104)
Detection and Diagnosis of 1 99.95% 99.96% 99.96% 99.95% 99.95% 99.94% 100.00% 99.75% 99.75% 100.00% 99.75% 99.25%

. . 2 .109 .619 169 .009 319 .189 .00% .009 759 129 629 129

Anomaly with Variable 99.10% 99.61% 99.16% 99.00% 99.31% 99.18% 100.00% 99.00% 98.75% 99.12% 98.62% 99.12%

o 3 5.57%  5.90% 6.07% 5.43% 631% 8.09% 555% 5.00% 7.00% 19.75%  6.12% 22.25%
Association Change (DAVAC) 4 100.00% 21.26% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 98.88% 100.00% 100.00% 100.00%

5 100.00% 99.78% 100.00% 100.00% 100.00% 100.00% 99.94% 100.00% 32.62% 100.00% 34.50% 100.00%

6 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

) 7 100.00% 79.61% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
Alternative models (adapted from 8 98.33% 98.58% 98.34% 98.31% 98.45% 98.39% 100.00% 98.12% 98.00% 98.25% 97.75% 98.38%
recent neural network architectures): 9 5.85% 11.16% 6.10% 5.71% 6.46% 7.36% 6.09% 5.00% 7.88% 15.25% 8.87% 21.37%
TCN - Temporal Convolution 10 89.94% 58.09% 93.09% 87.98% 97.14% 97.39% 95.85% 87.38% 54.13% 93.50% 55.75% 94.63%

P 11 86.42% 53.32% 86.42% 83.14% 99.11% 93.92% 100.00% 74.75% 74.25% 87.25% 80.75% 92.75%

Network 12 99.14% 99.58% 99.39% 99.20% 99.22% 99.28% 100.00% 99.75% 99.00% 100.00% 99.25% 100.00%
Attention-based LSTM 13 95.85% 99.38% 96.01% 95.84% 96.15% 96.03% 99.69% 95.75% 95.50% 95.75% 95.50% 96.25%

. 14 99.98% 92.01% 99.98% 99.98% 99.98% 99.98% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Trar?sform.er architecture 15 5.60%  8.14%  8.89%  5.74%  5.88%  6.28%  9.84% = 7.12% 10.62% 26.87% 11.13% 36.63%
Basic architectures such as LSTM, 16 90.78% 74.80% 92.64% 88.39% 97.19% 97.74% 99.45% 90.38% 46.50% 95.50% 48.50% 97.00%

17 96.49% 96.64% 96.51% 96.47% 96.50% 96.40% 99.89% 96.13% 93.13% 97.75% 94.78% 98.12%

7

18 94.56% 98.12% 94.69% 94.51% 94.55% 94.54% 98.96% 90.63% 90.38% 91.50% 90.50% 92.87%

19 87.14% 16.54% 86.34% 85.10% 90.43% 89.53% 100.00% 88.25% 25.12% 96.00% 34.00% 99.50%

20 95.92% 80.71% 95.92% 95.83% 95.96% 95.93% 99.57% 78.63% 58.25% 92.13% 61.75% 92.37%

False Positive]  5.00%  5.00%  5.00%  5.00%  5.00% 5.00% 5.00% 4.75%  5.00% 4.88%  5.00%  5.00%

Our model DAVAC outperforms other unsupervised models in most of the fault types

U.S. DEPARTMENT OF

EN ERGY * Sun W. et al. Fault Detection and Identification using Bayesian Recurrent Neural Networks, https://arxiv.org/abs/1911.04386 (Preprint, 2019)
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Data tags and configuration

Ininput InTarget InControl SourceName
1 1 5-F-FDR-DMD
5-F-FDR-DSCH-PRS
5-F-FDR-RATE T . e
raining data
1 1 5-F-FDR-SPD . « .
S F-MILLAP Data Loading . Model training
5-F-MILL-DP construction
1 1 5-F-MILL-INT-T
1 EFMILAT Time series Events data - Trained
1 1 5-F-MILLPAT define normal
1 1 5-F-MILL-T data . mOdeI
1 1 5F-FDR-SPD-BIAS operation

Data source
Input: all time series

measurements as input to model
Target: tags to predict
Control: command and actuation

measurements Performance
report

Time series
data

Performance

: Model running
evaluation




Barry unit 5 plant data experiments = |t
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Plant data:
- 16 months, 3994 tags, 1/min time series data

- NERC GADS report data

Based on plant events, developed initial priority list

NERC Cause Code

9270 WET COAL (OMC) — FEEDER STOPPAGE

270 PRIMARY AIR DUCTS AND DAMPERS

3232 CONDENSER TUBE CLEANING SYSTEMS INCLUDING DEBRIS FILTER
3211 CIRCULATING WATER PUMP MOTORS

%\ U.S. DEPARTMENT OF
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Experiment setup: 3 month for training; 13 months for evaluation

Use case Data tags configuration Performance evaluation

Inlnput InTarget InControl SourceName

WET COAL (OM C) - ! ! iiigigxﬁl oRS False Alarms False Alarms

Detected /13 months /13 months

FEEDER STOPPAGE: . . ?E'EB:SF’EE System  Total Events Events (TP)  (LSTM) (CNN)
’ shereR 4

Mill A 4 48 50
zim:ttg':w Mill B 2 2 29 34
1 1 5-F-MILL-INT-T Mf” ¢ ° ? 39 46
1 1 5-F-MILL-PA-1-F Mill D 6 6 22 27
1 1 5-F-MILL-PA-T Mill F 6 6 14 22
1 1 5-F-MILL-T
1 1 5F-FDR-SPD-BIAS
CO N D E N S E R TU B E Ininput InTarget InControl SourceName
1 1 5-DEBRIS-FLT-A-DP
C L EA N I N G SYST E M S 1 1 5-A-CRC-WTR-PMP-MTR-AMP Detected F/a::.s:n?l:nl;:‘: F/aill.;en?:lrtr:ss
1 1 5-A-CWP-MTR-LWG-BRG-T 3 Total E E (TP)  (LSTM) (CNN)
INCLUDING DEBRIS FILTER: 1 1 5-A-CWP-MTR_UPG.BRG-T T S R ; i
1 1 5-A-CWP-MT-THR-BRG-T cwPB 4 4 3
1 1 5-A-CWP-MTR-STAT-1-T
CIRCULATING WATER PUMP S —

MOTORS:

Demonstrated Al learning system on initial plant use cases

W4
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- Concluding remarks

Demonstrated an Al learning system on time series data for fault detection:
- Applicability to broad range of problems

- Easy to adapt — directly model time series data

- High performance

Next steps
- Continue experimentation of model architectures and training methods

- Develop model outcome interpretation — diagnosis
- Conduct study on few shot learning: how to effectively leverage a small sample of

faulty data
- Study a range of plant use cases — assess real-world utilities and gaps

g .7% U.S. DEPARTMENT OF
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DAVAC network architecture =|nanoNaL
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Detection and Diagnosis of Anomaly with Variable Association Change (DAVAC)

: S Module 1 Module2 5’ Module 3 |
; = : i : : :
o : SR o o o
| I ! i ! | . .. |
A g : l : ! Prediction ¢ o :
! [ : A~ ! ! : !
1 == : \ : : * . . :
I ® Gall §~\‘ > G | ! F ! Al for X( It]+1) ‘ :
: — — }\:\ ! : @) N ! ! \ 1
. . =X i o) | : P )
Dt b ¢ == Bl P @ : | - OH D : !
: D — /," 2 a : i T._\ O ®) (? : : :.O ) :
- 2@ : ¥ HRYEET . B | 0 ﬁ. |
T e N | | e |: Prediction P |
L o : | * |
: i : ! ! | i ! | i for X ( , tj+c) s |
Y - 4 ' | | | | | ' o |
=@ : i o i [ : i Ly
N B L . NN IR N Vo S .
ResNet: fully connected layer: Graph learning layer: fully connected chain: row-wise regression:
to learn different level of to compress univariate to learn variable to learn intervariate to regress objectives

univariate nonlinearity feature association nonlinearity




