Advanced tools for cyber-physical systems

and digital twins

Principal Investigator:

Co-Principal Investigator

Date:

DOE Award Number

Period of Performance

Dr. Mark Bryden

Dr. Paolo Pezzini

08/26/2020

DE-AC02-07CH11358

10/01/2018 - 09/30/2020

AMES LABORATORY

Simulation, Modeling, & Decision Science

Development of tools in support of the concept of integrating cyber-physical systems and digital twins into the current energy

system research and development process.

1. Middleware architecture to enable digital twin

2. Monitoring and control tools for existing power plants

3. Diagnostic tools using machine learning concept

Research Objectives

Publisher and subscriber architecture used to exchange I/O

variables in system automation through open source protocols

Middleware Architecture

Demonstrate a working environment for a digital twin

Merge Environment Simulation Analysis (MESA)

- OPC Client Executable using "Go" language to read OPC data
- RabbitMQ Message broker connecting OPC data to real time model
- Real time model of a Heat Exchanger
- Real time data analyzer

New tools developed

2. Monitoring and controls tools:

- Online system identification monitoring tool
- Model reference adaptive control (MRAC)
- Agent-based Control

- A sudden leak of 10% in the working fluid was reproduced
- An increase in the fuel flow was detected to maintain normal operation during the leak
- The leak was detected 5-7s after it occurred

Experimental results – Online system identification tool

¹ H. Bonilla, K. M. Bryden, L. Shadle, D. Tucker, and P. Pezzini "Development of realtime system identification to detect abnormal operations in a gas turbine cycle," *ASME Journal of Energy Resources Technology*, JERT-19-1712, Jul 2020, 142(7): 070903 (10 pages), doi.org/10.1115/1.4046144. 3.

² H. Bonilla, P. Pezzini, L. Shadle, D. Tucker, and K. M. Bryden "Online Adaptive Control Tuning in a Gas Turbine Hybrid System," Proceeding of the 2020 ASME Power Conference, ICONE28-POWER2020-16534, Anaheim, California, USA

Reference Setpoint, R

Adaptive control tool (MRAC)

Existing PID Controller

Model Reference Adaptive Controller

MRAC – Results

Coal mill outlet temperature control

- Multi-agents emulates intelligent control
- Agents can coordinate their behavior
- Agents are not limited to a set of models

3. Machine Learning Diagnostic tools

- Detection of unstable turbomachinery performance
- Increase model performance for a gas turbine system

Test Case	Data Points	Incipient Stall Events	Operating Conditions	Use in ML Model
1	7,692	2	Near stall	Training
2	9,216	0	Nominal	Training
3.1	46,080	8	Nominal to near stall	Training
3.2	10,880	7	Near stall	Testing

LSTM Hyperparameters

Input steps	40	
Output steps	15 (75ms)	
First layer size	32	
Second layer size	64	
Third layer size	32	
Batch size	64	
Learning rate	0.001	
Dropout	20%	

Long short-term memory (LSTM) implementation

- Stall prediction tool enables 5 to 20 ms reaction time
- Configured for online implementation in a digital twin concept

Operational Data

Neural Network

Performance predictions

Machine learning model for a gas turbine system

Traditional Euler turbomachinery equations

- Turbine speed Turbine work, inertia, shaft load, and rotational losses
- Rate of turbine work Turbine pressure ratio, turbine inlet mass flow, temperature, and specific heat
- Rate of compressor work change in the rate of the angular momentum
- **Temperature outlet –** Pressure ratio and specific heat ratio for compressor and turbine

- Real-time analysis with different computational models
- Performance evaluation during live operation

Machine learning vs physics-based tools

Steady-State Test Data

Results

2 1

- 1. Middleware architecture implemented on a pilot system
- 2. Monitoring and control tools successfully tested on a pilot system
- 3. Diagnostic tools using machine learning concept were developed using pilot system data

MESA Team in Ames

- Dr. Peter Finzell
- Mr. Harry Bonilla (PhD grad, Iowa State U)
- Mr. Zach Reinhard (PhD grad, Iowa State U)
- Mr. Sam Hipple (PhD grad, Iowa State U)
- Mr. Grant Johnson (Iowa State U)

- Hyper Team in NETL
 - Dr. David Tucker
 - Dr. Larry Shadle
- Dr. Daniel Maloney
- Dr. Farida Nor Harun
- Dr. Nana Zhou

