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Development of tools in support of the concept of integrating

cyber-physical systems and digital twins into the current energy

system research and development process.

Project Goal



1. Middleware architecture to enable digital twin 

2. Monitoring and control tools for existing power plants

3. Diagnostic tools using machine learning concept

Research Objectives



1. Middleware Architecture

Publisher and subscriber architecture used to exchange I/O 

variables in system automation through open source protocols



Middleware architecture: NETL’s cyber-physical facility 
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• OPC Client – Executable using “Go” language to read OPC data

• RabbitMQ - Message broker connecting OPC data to real time model

• Real time model of a Heat Exchanger

• Real time data analyzer

New tools developed

Merge Environment Simulation Analysis (MESA)



2. Monitoring and controls tools:

• Online system identification monitoring tool

• Model reference adaptive control (MRAC)

• Agent-based Control 
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• A sudden leak of 10% in the working fluid was reproduced

• An increase in the fuel flow was detected to maintain normal operation during the leak

• The leak was detected 5-7s after it occurred

Real-time Training Real-time Validation

Experimental results – Online system identification tool



Recursive Algorithm implementation

Online system identification –

recursive algorithm

Monitoring tool

Adaptive control tool

V1.0.0
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Adaptive control tool (MRAC)
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MRAC – Results 12

Existing PID Controller Model Reference Adaptive Controller
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• Multi-agents emulates intelligent control

• Agents can coordinate their behavior

• Agents are not limited to a set of models

Primary air temperature
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Preliminary results - Coal mill outlet temperature model 



3. Machine Learning Diagnostic tools

• Detection of unstable turbomachinery performance

• Increase model performance for a gas turbine system



Test Case
Data 

Points

Incipient Stall 

Events

Operating 

Conditions

Use in ML 

Model

1 7,692 2 Near stall Training

2 9,216 0 Nominal Training

3.1 46,080 8 Nominal to near stall Training

3.2 10,880 7 Near stall Testing

LSTM Hyperparameters

Input steps 40

Output steps 15 (75ms)

First layer size 32

Second layer size 64

Third layer size 32

Batch size 64

Learning rate 0.001

Dropout 20%

Long short-term memory (LSTM ) implementation



Detection Results 1
7

16 epochs 32 epochs

•Stall prediction tool enables 5 to 20 ms reaction time

•Configured for online implementation in a digital twin concept



Operational Data Neural Network Performance predictions

Machine learning model for a gas turbine system



Physics-based model

Traditional Euler turbomachinery equations

• Turbine speed – Turbine work, inertia, shaft load, and rotational losses

• Rate of turbine work – Turbine pressure ratio, turbine inlet mass flow, temperature, and specific heat

• Rate of compressor work – change in the rate of the angular momentum

• Temperature outlet – Pressure ratio and specific heat ratio for compressor and turbine
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• Real-time analysis with different computational models

• Performance evaluation during live operation

Machine learning vs physics-based tools



Results 2
1

Steady-State Test Data



1. Middleware architecture implemented on a pilot system

2. Monitoring and control tools successfully tested on a pilot 

system 

3. Diagnostic tools using machine learning concept were 

developed using pilot system data

Summary
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