

AOI 2: A Novel Access Control Blockchain Paradigm for Cybersecure Sensor Infrastructure in Fossil Power Generation Systems

Rahul Panat¹, Vipul Goyal²

¹Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh PA ²Computer Science Department, Carnegie Mellon University, Pittsburgh PA

Carnegie Mellon University

Outline

• Background

-Sensor Systems in Power Plants

- Private Access Controlled Blockchain Concept
- Creating Cybersecure Sensor Networks
- Tasks and Deliverables

Sensing Applications

- Power generation and distribution infrastructure can experience both external or internal cyberattacks
- Novel methods are required to secure the data, while also controlling its access

Objective of the Project

To design, characterize, and demonstrate a breakthrough secure blockchain protocol, namely smart private ledger with hierarchical access control for fossil power generation systems

Project Timelines and Deliverables

Tasks and Timelines

Taska	Ourner		Ye	ar-1		Year-2				
TASKS	Owner	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	
Task 1.0: Project Management and Planning	Panat									
Task 2.0: Create a Sensor Network to Generate Data	Panat									
Task 3.0: Data Transmission to Blockchain Nodes	Panat									
Task 4.0: Development of Blockchain with Computers as Simulated Nodes	Goyal									
Task 5.0: Create Hierarchical Access Control for Data Retrieval	Goyal									
Task 6.0: Simulated Cyberattacks and Demonstration of Robustness of the Blockchain	Panat/Goyal									

- Project period: 2 years
 - Data acquisition and transmission system
 - Creation of blockchain protocols
 - Simulate cyberattacks and demonstration lab-scale system

- Project Management and Planning
 - The PIs will shall manage and direct the project in accordance with a Project Management Plan to meet all technical, schedule and budget objectives and requirements. The PIs will coordinate activities in order to effectively accomplish the work. The PIs will ensure that project plans, results, and decisions are appropriately documented and project reporting and briefing requirements are satisfied.

Taska	Ourpor	Year-1					Year-2				
Tasks	Owner	Q1	Q	2	Q3	Q4	Q5	Q6	Q7	Q8	
Task 1.0: Project Management and Planning	Panat										
Task 2.0: Create a Sensor Network to Generate Data	Panat										
Task 3.0: Data Transmission to Blockchain Nodes	Panat										
Task 4.0: Development of Blockchain with Computers as Simulated Nodes	Goyal										
Task 5.0: Create Hierarchical Access Control for Data Retrieval	Goyal										
Task 6.0: Simulated Cyberattacks and Demonstration of Robustness of the Blockchain	Panat/Goyal										

- Create a Sensor Network to Generate Data
 - This task will involve the development of sensor networks for the development of the proposed technology. The task will be performed by Panat group

Taska	0		Ye	ar-1		Year-2				
Tasks	Owner	Q1 Q2 Q3 (Q4	Q5 Q6		Q6 Q7			
Task 1.0: Project Management and Planning	Panat									. /
Task 2.0: Create a Sensor Network to Generate Data	Panat									
Task 3.0: Data Transmission to Blockchain Nodes	Panat									
Task 4.0: Development of Blockchain with Computers as Simulated Nodes	Goyal									
Task 5.0: Create Hierarchical Access Control for Data Retrieval	Goyal									
Task 6.0: Simulated Cyberattacks and Demonstration of Robustness of the Blockchain	Panat/Goyal									

- Data Transmission to Blockchain Nodes
 - This task will involve the development of wireless transmission of the signal to the blockchain nodes. The task will be performed by Panat group

- Development of Blockchain with Computers as Simulated Nodes
 - This task will involve the development of the smart private ledger blockchain with hierarchical access control and secret sharing protocols and will be performed by the Goyal group.

- Create Hierarchical Access Control for Data Retrieval
 - This task will develop algorithms to retrieve the data from the blockchain and will be performed by the Goyal group

- Simulated Cyberattacks and Demonstration of Robustness of the Blockchain
 - PIs will simulate cyberattacks to harden the blockchain system for real world secure deployment
 - Common strategies such as those used during the Ukranian power grid attack will be studied and the blockchain system will be subjected to similar attacks.
 - Any changes if needed will be made and the entire process will be repeated. We expect our system to provide very high level of security against such attacks by eliminating a single point of failure.

Taska	Ownor		Ye	ar-1	-	Year-2				
I dSKS	Owner	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	
Task 1.0: Project Management and Planning	Panat									
Task 2.0: Create a Sensor Network to Generate Data	Panat									
Task 3.0: Data Transmission to Blockchain Nodes	Panat									
Task 4.0: Development of Blockchain with Computers as Simulated Nodes	Goyal									
Task 5.0: Create Hierarchical Access Control for Data Retrieval	Goyal									
Task 6.0: Simulated Cyberattacks and Demonstration of Robustness of the Blockchain	Panat/Goyal									

Building Sensor Network

High Temperature Sensor Fabrication

CMU has developed sensor fabrication methods and testing systems for fossil power plants that can work at temperatures up to 500 C

High Temperature Sensor Testing

CMU has developed sensor fabrication methods and testing systems for fossil power plants that can work at temperatures up to 500 C

High Temperature Data Acquisition System

CMU has developed sensor systems for fossil power plants that can work at temperatures up to 500 C

Strain Measurement

Successfully demonstrated strain measurement using Mantracourt T24 telemetry system

- 1. Installed a commercial strain sensor (VY4 Shear/Torsion full bridge strain gauge) acquired from HBM, USA
- 2. Integrated the strain sensor with transmitter and base station

Strain Measurement

E type beam

Strain sensor showing good adhesion to beam surface Strain sensor integrated with transmitter module

Temperature Measurement

Temperature sensor integrated with transmitter

Data Transmission

Data Transmission

- 600 m range in an open field site w/ license free 2.4 GHz direct sequence spread spectrum (DSSS) radio technology
- Data Encryption for complete security (128-bit AES)
- Proprietary protocol based on a 802.15.4 chip allowing T24 range to co-exist with Bluetooth, Zigbee & Wi-Fi devices w/o conflicts!!

Temperature Measurement

DataTag	ms Elapse Value	Time Stamp			100 C					
CE3A	255 28.6051	1 Sunday	April 12	2020 10:56:26 AM:860						
CE3A	592 28.5891	9 Sunday	April 12	2020 10:56:27 AM:197						
CE3A	927 28.6224	S Sunday	April 12	2020 10:56:27 AM:533						
CE3A	1263 28.5833	4 Sunday	April 12	2020 10:56:27 AM:868						
CE3A	1598 28.6299	1 Sunday	April 12	2020 10:56:28 AM:203						
CE3A	1935 28.6184	2 Sunday	April 12	2020 10:56:28 AM:540						
CENA	2271 28.5990	6 Sunday	April 12	2020 10:56:28 AM:876	DataTag	ms Elapse	Value	Time Stamp		
CE3A	2607 28.6006	8 Sunday	April 12	2020 10:56:29 AM:212	CEDA	255	38 60511	Cundau	A	2020 10-56-26 414-860
CESA	2941 28.6208	3 Sunday	April 12	2020 10:56:29 AM:546	CESA	255	28.00511	Sunday	April 12	2020 10:50:20 AMI:800
CESA	3614 26.0299	1 Sunday	April 12	2020 10:56:29 AM:884	CE3A	592	28.58919	Sunday	April 12	2020 10:56:27 AM:197
CE3A	3051 28 620	Sunday	April 12	2020 10:56:30 AM-557	CEDA	027	20 62245	Sunday	April 12	2020 10:56:27 414:522
CERA	4785 78 6488	6 Sunday	Anril 12	2020 10:56:30 AM-891	CESA	927	20.02245	Sunday	April 12	2020 10.50.27 AMI.555
CE3A	4621 28.6536	9 Sunday	April 12	2020 10:56:31 AM:226	CE3A	1263	28.58334	Sunday	April 12	2020 10:56:27 AM:868
CE3A	4957 28.6284	9 Sunday	April 12	2020 10:56:31 AM:563	CE3A	1598	28 62991	Sunday	April 12	2020 10:56:28 AM-203
CE3A	5291 28.6184	2 Sunday	April 1	2020 10:56:31 AM:897	CLON	1550	20.02331	Junuay	April 12	2020 10.50.20 AMI.205
CE3A	5627 28.6373	6 Sunday	April 12	2020 10:56:32 AM:232	CE3A	1935	28.61842	Sunday	April 12	2020 10:56:28 AM:540
CE3A	5963 28.6359	5 Sunday	April 12	2020 10 56:32 AM:568	CE3A	2271	28 59906	Sunday	April 12	2020 10:56:28 AM:876
CE3A	6300 28.6430	1 Sunday	April 12	2020 10:56:38 AM:905	CLUA	22/1	20.55500	Junuay	April 12	2020 10:50:20 AMI.070
CE3A	6637 28.6476	4 Sunday	April 12	2020 10:56:33 AM 243	CE3A	2607	28.60068	Sunday	April 12	2020 10:56:29 AM:212
CE3A.	6970 28.6621	6 Sunday	April 12	2020 10:56:33 AM:575	CE3A	2041	28 62083	Sunday	April 12	2020 10:56:29 AM:546
CE3A	7308 28.6811	1 Sunday	April 12	2020 10:56:33 AM:913	CLOA	2541	20.02000	Sunday	April 12	2020 10.30.23 AMI.340
CE3A	7644 28.6460	3 Sunday	April 12	2020 10:56:34 AM:249	CE3A	3279	28.62991	Sunday	April 12	2020 10:56:29 AM:884
CE3A	7979 28.6633	7 Sunday	April 12	2020 10:56:34 AM:584	CE3A	3614	28 61063	Sunday	April 12	2020 10-56-30 AM-220
CE3A	8314 28.6399	8 Sunday	April 12	2020 10:56:34 AM:919	CLOA	5014	20.01905	Junuay	April 12	2020 10.50.50 AWI.220
CESA	8549 28.6504	7 Sunday	April 12	2020 10:56:35 AM:254	CE3A	3951	28.62547	Sunday	April 12	2020 10:56:30 AM:557
CESA	8984 28.6536	9 Sunday	April 12	2020 10:56:35 AM:589	-					

Snapshot of temperature data collected in a .csv file

Smart Private Ledger: Blockchains with Private Computation

Bitcoin

- □ First successful cryptocurrency
- Proposed by "Nakamoto" in 2008, mining started in Jan 2009
- Current market cap > 100B, Price > 8-10k
- First recorded transaction: mid 2010

Bitcoin

Decentralized, no trusted server
 Miners and users

Need for Private Data

As of today:

- All data on public ledger = public
- Private, access controlled data?
- Build an intelligent access controlled ledger
 - Different data visible to different parties
 - Even do computation on private data
 - 3rd gen Blockchain tech

The Overall Vision: Create Smart Private Ledger

Development of Smart Private Ledger

Our system flow is as follows:

- Generating secret key
- Loading and encrypting csv file containing the data from sensor network (using AES secret key encryption scheme)

Development of Smart Private Ledger

- Generating secret key shares
- Encrypting secret key shares (using RSA algorithm)
- Decrypting secret key shares
- Reconstructing secret key
- Decrypting ciphertext to obtain original file containing data
- Smart contract to store/retrieve data from blockchain

System Design

- Secret sharing and file encryption is implemented to be run locally on a given miner's machine. Any file type containing the data can be encrypted with this secret sharing algorithm.
- Once this data is generated, it is stored in the smart contract which is deployed on the blockchain (Ethereum).
- Any miner is then able to access the data from the smart contract and decrypt their respective shares.
- With their keys recovered, they are able to decrypt the data file and have access to the sensor network data.

Smart Contract Storage

We create a smart contract which stores a mapping from miner address to secret key share (of type bytes) with the following functions:

- Add share to the mapping
- Store the encrypted file
- Retrieve the share of a given miner address
- Check if an address is in the map

Integration in Data Acquisition System

Smart private ledger Blockchain

Deliverables and Timelines

Task / Subtask Number	Deliverable Title	Due Date
1.0	Project Management Plan	Update due 30 days after award. Revisions to the PMP shall be submitted as requested by the NETL Project Manager.
2.0	Sensor Networks for Fossil Power Generation System	Delivery to NETL 6 months after the start of the project.
3.0	Secure transmission of sensors to blockchain nodes	Delivery to NETL 3 months after Task-2.0, i.e., 9 months after the start of the project.
4.0	Smart Private Ledger Blockchain (codes and algorithms)	Delivery to NETL 12 months after the start of the project.
5.0	Hierarchical Access Control for Data Retrieval (codes and algorithms)	Delivery to NETL 3 months after the Task-4.0, i.e., 15 months after the start of the project
6.0	Robust Blockchain Including Necessary Modifications Ready to be Implemented in the Field	Delivery to NETL 9 months after the Task-5.0, i.e.,24 months after the start of the project

Challenges and Risks

No	Risks	Probability	Impact	Mitigation					
i.	Delay in the formation of sensor networks: The PIs propose to create high temperature sensor networks at CMU by leveraging a prior NETL project on sensors and using aerosol jet printing technology. There is a risk for equipment breakdown and the sensor networks not being ready by the end of the third quarter	Low	High	 Warranties/service agreements manufacturers are in place for the equi- The PIs will use individual commerce sensors in case the sensor networe delayed. 	with the uipment. cial temperature k fabrication is				
ii.	Risk for wireless transmission: There is a low probability that the sensor networks cannot send the signal wirelessly to the blockchain nodes.	Low	Moderate	 The PIs will use commercial wireless a back-up to demonstrate the concep Multiple suppliers are available in t wireless sensors and will be utilized as 	sensors (two) as t he market with s necessary.				
iii.	Risk for formation of Blockchains: there is a small probability that the continuous stream of data coming from sensor readings will cause scalability issues in the blockchain	Low	Moderate	 The PIs will increase the block size to number of transactions per second The number of new blocks per unit be increased to improve the scalability 	handle a larger time could also ty of the system				
iv.	Risk for data retrieval: there is a risk that if a number of nodes on the Blockchain go offline, the data stored could become inaccessible	Low	Moderate	. This risk can be mitigated by increasin nodes. The higher the number of no the availability of the system would compared to a centralized data stor will provide much higher level of anor	ng the number of odes, the better be. In any case, age, the system nymity.				

Acknowledgements

- NETL for supporting this research under grant # DE-FE0031770
- Dr. Robie Lewis, Dr. Vito Cedro, and Dr. Sydni Credle for help on guidance of the project

Questions?

