

SIEMENS

Ingenuity for life

Unrestricted © Siemens AG 2020

siemens.com

SIEMENS

Outline

Introduction

Project Objective

- **Project Approach to Meet Technical Targets**
- Task 2.0 Demonstrate component scale up efforts for embedded sensors
- Task 3.0 RF Communications package development
- Task 4.0 Integration into Blade Health Monitoring and Power Diagnostics®
- Task 5.0 Define and Manufacturing Test Article for engine test
- Task 6.0 Conduct Engine testing of Instrumented Turbine blades

Project Schedule and Milestones

Unrestricted © Siemens AG 2020

Project Objectives to Meeting FOA requirements

SIEMENS

Project information

PI: Anand Kulkarni

Funder: DOE Office of Fossil Energy (FE) – NETL Crosscutting

Strategic Partner: Siemens Gas and Power, RTRC

Total Project Funding: \$1.25M (\$1M Federal/\$250K Cost share)

Project Details

- Design and develop embedded elements and communication/sensing circuitry for blade health monitoring of steam turbine.
- Baseline the performance of RF sensor/ communication with current multi-probe blade vibration monitor utilized in service on a test rig.
- Integrate the novel RF-based blade vibration monitoring within Siemens Power Diagnostics ® for remote real-time monitoring of blade health.
- Technology validate an integrated blade with embedded sensor/wireless communications device in an extreme-environment steam turbine.

Technical Highlights

Funding Opportunity Objective	Objective of the proposed work
Fabricate and assemble a component with embedded	Design and develop embedded elements utilizing
sensor technology	additive manufacturing and RF
	communication/sensing circuitry for blade health
	monitoring of steam turbine
Develop methodologies that merge in-situ component	Integrate the novel RF-based blade vibration
health monitoring	monitoring within Siemens Power Diagnostics ® for
	> remote real-time monitoring of blade health
Conduct testing and demonstration of a fully integrated	Technology validation of an integrated blade with
'smart' prototype applicable to a fossil-based energy	bence embedded sensor/wireless communications device in
system process	an extreme-environment steam turbine.

NASA GRC high precision spin rig microwave sensor.

Blade tip clearance and timing testing on the sensor Calibration Rig

Unrestricted © Siemens AG 2020

Project Team and Expertise

SIEMENS

	Anand Kulk Principal	karni, Siemens Investigator	Team Member	Skill and expertise
Materials knowledge, Operational flexibility, Steam Turbines Field Experience, Anand Kulkarni, Siemens William McDonald, Siemens Tom Joyce, Siemens - Additive Manufacturing - Materials performance - Service/Field issues RF sensing modality, communications Joseph Mantese, RTRC Brian McBabe, RTRC Gurkan Gok, RTRC - Additive Manufacturing - Sensors/Communication circuitry - Bench testing of communications Validation Testing William McDonald, Siemens - Test rig validation - Integration with Power Diagnostics® - Data analytics		Contract Administration Kevin Go, Siemens Kathy Sasala, Siemens - Contract management	<u>Principal Investigator</u> : Anand Kulkarni	Principal Key Expert; 25 years in research and technology in the area of materials/coatings/sensors for power systems, 10 years in materials needs for environmental and operational flexibility
		Financial Management Terri Held, Siemens - Financials, invoicing - Subcontractor agreements	<u>Siemens Team</u> : William McDonald (WM) Tom Joyce (TJ)	 <u>WM</u>: Senior Engineer, Program Manager, 10 years' experience with service engineering and monitoring of steam turbines. <u>TJ</u>: Senior Engineer, 10 years' experience with design, and instrumentation/testing of steam turbines
		Senior Technical Advisors Xavier Montesdeoca, Siemens Michael Smiarowski, Siemens Thomas Pool, Siemens - Steam turbine design and modifications - Instrumentation and Controls	<u>UTRC Team</u> : Joseph Mantese (IM)	<u>JM:</u> Research Expert; 30 years of experience in electronic materials, components, sensors, and packaging, developing the additive manufacturing processes for sensors and RF sensing/communication circuitry BM: Research Expert 30 years' experience of architecture
		Program Management Tobias Ahlgrim, Siemens - Risk analysis - Program management	Brian McCabe (BM) Gurkan Gok (GG)	and electronic systems for interfacing with the sensor suite at the system level and in test rig configurations <u>GG:</u> Research Expert, 10 years' experience in sensor and packaging, simulations and RF sensing/communications circuitry

Unrestricted © Siemen The technical team is strong and has the capability for successful demonstration

Sensors Using RF as Sensing Modality

SIEMENS

New Generation of Sensing Utilizing an RF Modality with Miniaturized High Efficiency Antenna Structures

New class of sensors (especially for extreme environments): position, velocity, acceleration for Unrestricted © Siemens AG 2020 pressure, vibration, temperature, etc Kulkarni/ Siemens

Existing Blade Vibration Monitoring Approach

SIEMENS

- Stationary pickups (magnetic sensors) sense time of arrival for each blade tip
- Difference between actual and expected times represents tip deflection (a_{ii})

Page 6

Project Overview Project Tasks

SIEMENS

Task	Description	Responsible
Demonstrate component scale up efforts for embedded sensors	 Establish sensor specification Sensor selection and localization Sensor and circuitry design Benchmark criteria selection 	RTRC Siemens CT
RF Communications package development	 Communication requirements Layout of communication circuitry Assembly of test rig Functional tests 	RTRC Siemens CT
Integration into blade Health monitoring und power diagnostics	 Interface specification to Siemens Power Diagnostics Calibration Model Develop Observers 	Siemens CT Siemens Energy
Define and manufacturing test article for engine test	 Define test scenario Localization of sensor on steam turbine Integration of sensor and steam turbine 	Siemens Energy RTRC
Conduct engine testing of instrumented turbine blades	 Simulate Engine test to provide predictions Run an engine test that follows the predictions Evaluate the sensing 	Siemens Energy

Unrestricted © Siemens AG 2020

Task 2.0 – Demonstrate component scale up efforts for embedded sensors

SIEMENS

RF-based Blade Tip Timing Sensor

- Blade vibration monitoring system aims to assess changes in vibration frequency of blades over time.
- RF/MW based blade tip timing sensor hardware consists of a transceiver, a waveguide and sensor.
- Received signal waveform provides information about the position of the blade with respect to aperture.

Unrestricted © Siemens AG 2020

Page 9

Functional block diagram of a generic blade vibration monitoring system

SIEMENS

Simulation Model Development

- To characterize the signal waveform from RF based sensors and the blade geometry of interest, a simulation model for the blade and sensor were developed.
- The blade tip dimensions were modelled based on the information provided by Siemens.
- A rectangular waveguide probe was chosen as sensor geometry at this stage of the investigation.

Sensor aperture and small representative rim

Blade cross sections – Aluminum

Rest of the structure will be made of relatively less reflective plastic material

Page 10

U.S. Export Controlled • ECCN: EAR99

Kulkarni/ Siemens

SIEMENS

Blade geometry model

Simulated Sensor Performance

- A preliminary performance analysis of the RF/MW probe was investigated.
- Waveforms as blade sweeps across the aperture were simulated for two extreme clearances.
- The sensor was not optimized for best performance and does not include proper protective packaging/housing for its endurance in the turbine environment, yet.

Page 11

U.S. Export Controlled • ECCN: EAR99

Kulkarni/ Siemens

SIEMENS

Concepts Under Consideration

Concept investigation for optimum probe performance

Unrestricted © Siemens AG 2020

Page 12

Kulkarni/ Siemens

SIEMENS

Task 3.0 – RF Communications package development

SIEMENS

Unrestricted © Siemens AG 2020

Page 13

Benchtop Model and RF Communication Package Development

Preliminary design of bench-top model for testing sensor and communication/sensing circuitry

Millimeter wave parts on PCB

Communication circuitry design/manufacturing at RTRC

Kulkarni/ Siemens

SIEMENS

Task 4.0 – Integration into Blade Health Monitoring and Power Diagnostics®

SIEMENS

Unrestricted © Siemens AG 2020

Page 15

Need for Real-time Online Monitoring for Blade Vibration Monitoring

SIEMENS

increasing

crack-size

1.0

L

L,max

0

Unrestricted © DETECTION OF CRACKS IN TURBOMACHINERY BLADES BY ONLINE MONITORING

RF Data Ingestion from Sensors

Page 17

IPsec VPN tunnels for securing • network connections Create RF sensor Data encryption both at rest and in transit Real-time Integrate with Sensors • Analytics Apache Kafka **IoT Gateway** Sensors • **Batch** • Sensors Processing RF (Radio Frequency) ٠ Real-time streaming data sensors data pipelines Used to measure blade • Decouples streaming data • tip ratio and deformation producers from data consumers Deployed on Edge or Cloud Unrestricted © Siemens AG 2020

SIEMENS

Siemens Power Diagnostics

Monitoring dashboard

performance Baseline

Alerting capability

Project Approach for Embedded Sensors for Steam Turbine Blade Vibration Monitoring

SIEMENS

<u>Year 1</u>	Year 2
Embedded AM Sensors, RF	Smart blade component, Develop HM
Communications, Health Monitoring (HM)	Approach, Engine testing of
Tool	integrated blade
Technical ProgressDevelop RF sensors and communication circuitry for bench testingDevelop health monitoring toolCollect baseline blade monitoring data for specificationsGo / No-GoAM deposition for embedded sensorsRF Sensor/ Wireless telemetry demonstrated on lab rig setup Health monitoring framework	Technical ProgressRobust embedded RF sensor/Communications demonstratedIntegrated sensor/communicationon steam turbine bladeIntegration with power diagnosticsGo / No-GoSpin test miniature embedded sensor wireless telemetrysystemDemo high throughputEmbedded sensor manufacturing processEngine test validation of novel approach vs non-contactblade monitoring

Unrestricted © Siemens AG 2020

Project Schedule

SIEMENS

ID	Task Name	Duration	Start	Finish	22	Task 4: Integration into Blade Health Monitoring and Power Diagnostics®	311 days	Tue 11/12/19	Tue 1/19/21	Ť
1	For head of a second	522 days2	Tue 10/1/10	Thu 0/20/24	23	Field feedback for observed failure mechanism from blade monitoring		Tue 11/12/19	Mon 3/30/20	4
	Embedded sensors integrated into critical components for in situ nealth monitoring of steam turbines	523 days?	Tue 10/1/19	Thu 9/30/21	24	Health monitoring methodology for complex damage mechanisms for		Tue 3/31/20	Mon 10/26/20	:
2	Task 1: Program Management and Planning	523 days?	Tue 10/1/19	Thu 9/30/21	25	Model calibration using Machine Learning techniques to 6 multi-dimensional inputs correlated to sensor data		Tuo 10/27/20	Mon 1/19/21	+.
3	Update SOPO	30 days	Tue 10/1/19	Mon 11/11/19	25			10/2//20	1011 1/ 10/ 21	1
4	Kick-off Meeting	30 days	Tue 10/1/19	Mon 11/11/19	26	Develop interface with Power Diagnostics® with results/predictions 1 dashboard for guick in-field application		Tue 1/19/21	Tue 1/19/21	÷
5	Project Management	523 days?	Tue 10/1/19	Thu 9/30/21	20				100 110121	ľ
6	Contract Administration and Cost Reporting	523 days?	Tue 10/1/19	Thu 9/30/21	27	Task 5: Define and Manufacturing Test Article for engine test	412 davs	Tue 11/12/19	Wed 6/9/21	T
7	Technical Reporting	523 days?	Tue 10/1/19	Thu 9/30/21	28	Define test article blade with identified sensor locations and RF	150 days	Tue 11/12/19	Mon 6/8/20	
8	Progress Reports	523 days?	Tue 10/1/19	Thu 9/30/21		communications package		,,		
9	Task 2: Demonstrate component scale up efforts for embedded sensors	347 days	Tue 11/12/19	Wed 3/10/21	29	Integration of embedded RF sensors with wireless telemetry package on	100 davs	Wed 9/16/20	Tue 2/2/21	÷
10	Baseline analysis of existing blade monitoring efforts to establish sensor	60 days	Tue 11/12/19	Mon 2/3/20		steam turbine blade				
	specifications				30	Conduct a thorough inspection of the test article with functionlity	90 days	Wed 2/3/21	Tue 6/8/21	1
11	Downselect sensor location of critical areas from Engine analysis	60 days	Tue 2/4/20	Mon 4/27/20	31	Manufacture test article instrumented blade to compare with non	1 day	Wed 6/9/21	Wed 6/9/21	Ţ
12	Downselect sensor designs and circuitry to match specifications of blade	100 days	Tue 4/28/20	Mon 9/14/20		contact blade monitoring				
	monitoring				32	Task 6: Conduct Engine testing of InstrumentedTurbine blades	206 days	Tue 11/17/20	Tue 8/31/21	
13	Develop RF position sensor breadboard circuitry for bench testing	1 day	Tue 9/15/20	Tue 9/15/20	33	Define Instrumentation Plan and Install Instrumented component in engine for 3		Tue 11/17/20	Mon 1/4/21	:
14	Evaluation of sensor performance for integrated/embedded sensors for	125 days	Wed 9/16/20	Tue 3/9/21		testing and validation				
	repeatability/geometry effectson lab test rig				34	Simulate Engine Test to provide Predictions based on computational fluid dynamics		Tue 1/5/21	Mon 3/29/21	1
15	Demonstrate packaged RF position sensor for engine testing	1 day	Wed 3/10/21	Wed 3/10/21		and heat transfer models for analysis of the engine test results.	50.1	T 2/20/24	NA 6/7/24	-
16	Task 3: RF Communications package development	266 days	Tue 11/12/19	Tue 11/17/20	35	Achieve a successful engine test with baseline blade monitoring	50 days	Tue 3/30/21	Mon 6/7/21	-
17	Define communications requirements (power/position/distance) for eng	30 days	Tue 11/12/19	Mon 12/23/19 ·	36	Analyze the results of the experiment, comparing and understanding the	60 days	Tue 6/8/21	Mon 8/30/21	1
18	Design layout and fabrication iterations for RF communications circuitry	50 days	Tue 12/24/19	Mon 3/2/20	27	differences between RF sensing and non contact blade monitoring				÷
19	Functionality testing iterations for RF wireless circuitry	100 days	Tue 3/3/20	Mon 7/20/20	37	7 Engine test validation of novel embedded sensor vs non-contact blade		Tue 8/31/21	Tue 8/31/21	1
20	Demonstrate integrated sensors with wireless telemetry for signal	85 days	Tue 7/21/20	Mon 11/16/20	20	vibration monitoring	aa 1	T 0/04/04	T I 0/20/24	÷
	transmission in a lab test rig				30	Final Technical report detailinembedded sensors integrated into critical	23 days	Tue 8/31/21	1 nu 9/30/21	ł
21	Demonstrate RF communication package for engine testing	1 day	Tue 11/17/20	Tue 11/17/20		components for in situ nealth monitoring of steam turbines				1

Unrestricted © Siemens AG 2020

Page 19

Milestones and Deliverables

SIEMENS

	Success Criteria at Decision Points	
Milestone No.	Year 1	Plan
3	 Develop RF position sensor breadboard circuitry for bench testing, demonstration of embedded sensor on turbine hardware Demonstrated for RF position sensor circuitry on bench test, also demonstrate embedded sensor on turbine blade hardware 	09/15/20
Milestone No.	Year 2	Plan
8	Engine test validation of novel embedded sensor vs non-contact blade vibration monitoring Demonstration of blade vibration monitoring utilizing novel RF sensor modality/communications for blade in steam turbine to compare with baseline non-contact vibration monitoring.	08/31/21

Unrestricted © Siemens AG 2020

Subtask	Milestone Title & Description	Completion Date	Verification method					
Year 1 (Oct 2019 – Sept 2020)								
1	Baseline analysis of existing intrusive blade vibration monitoring efforts to establish sensor specifications.	2/3/2020	Survey of technical reports for sensor specifications					
2	Topology optimization, design layout and fabrication iterations for RF communications circuitry	3/30/2020	Electronic design for functional demonstration of RF communications					
3	Develop RF position sensor breadboard circuitry for bench testing, demonstration of embedded sensor on turbine hardware	9/15/2020	Benchtop Lab testing for sensor functionality with wireless telemetry					
	Year 2 (Oct 2020 –	Sept 2021)						
4	Develop interface with Power Diagnostics® with results/predictions dashboard for quick in-field application	1/19/2021	Model interface with integration of sensor data for real-time vs calculated vibration monitoring					
5	Demonstrate packaged RF position sensor for engine testing for desired full speed and vibrations	3/10/2021	Lab testing of engine hardware for functional qualification					
6	Manufacture test article instrumented blade to compare with non contact blade monitoring	6/9/2021	Embedded sensor integrated on steam turbine hardware					
7	Engine test validation of novel embedded wireless sensor vs intrusive non-contact blade vibration monitoring	8/31/2021	Engine testing of existing system vs novel RF sensing of vibrations					

Planned

Tack/

Kulkarni/ Siemens

Next Steps

SIEMENS

- 1. Probe design with optimum performance for the given operational range of blade tip clearances (under Task 2.0)
- 2. Further investigation of concepts (under Task 2.0)
- 3. Implementation of the benchtop set up (under Task 3.0)
- 4. Correlation of new sensing approach to existing waveform from blade vibrations (under Task 4.0)
- 5. Test sensitivity of existing vibration monitoring algorithms with signal from RF sensing (under Task 4.0)
- 6. Data analytics interface with existing Siemens Power Diagnostic center (Task 4.0)