Award DE-FE0031641

“Physical Domain Approaches to Reduce Cybersecurity Risks Associated with Control Systems”

2020 SENSORS AND CONTROLS PROJECT REVIEW MEETING
• PHYSICAL DOMAIN APPROACHES TO REDUCE CYBERSECURITY RISKS ASSOCIATED WITH CONTROL SYSTEMS
• Contract: DE-FE0031641
• PROJECT PERIOD: OCT 2018 THROUGH SEPT 2020
• NETL Program Manager: Chuck Miller
• GE Research PI: Daniel Holzhauer
• Key GE Research Team Members: Matt Nielsen, Michael Mylrea
Agenda

• Project description and objectives
• Program task status
• Work related to cyber resilience
• Cyber physical detection system
• Test demonstration
• Challenges
• Next steps
• Concluding remarks
• Questions
Project Description and Objectives

- **Study current physical domain approaches** potentially applicable to reducing cybersecurity risks associated with the deployment of advanced controls to fossil power generation assets
- Develop survey of **cyber security landscape** affecting control systems of fossil fuel power plants
- Perform list of high-risk threats and faults, identify vulnerabilities, risk factors, and their impacts
- Study **capabilities of existing fault detection and fault-tolerant** control systems
- Evaluate applicability of other DOE funded efforts to fossil power generation context
- Evaluate applicability of **secure communication technology** to cybersecurity sensors and controls in combined power plants of the future
- **Identify gaps, develop requirements and recommendations** for advanced monitoring solutions
Project Description and Objectives

• Strategic alignment of project to Fossil Energy objectives
 • Cybersecurity
 • Machine Learning
 • Secure communication
• Project Status now
 • Functional attack detection, localization and neutralization system demonstrated on a real physical asset 9HA.02 HD GT [CEDS Program DE-OE0000833]
 • Simulation platform of real-time neural network demonstrating fault-cyber classification

NETL Program Task Status

- Develop survey of **cybersecurity landscape** affecting critical cyber assets and control systems of fossil fuel power plants
- Perform list of **high-risk threats** and faults, identify vulnerabilities - list of threats that may affect gas turbines, steam turbines, coal-fired boilers, and clean coal systems, plus balance of plant systems
- Study **capabilities of existing fault detection** and fault-tolerant control systems
- Evaluate applicability of other **DOE funded efforts** to fossil power generation context
- Evaluate applicability of secure communication technology to **cybersecure sensors and controls** in combined power plants of the future
- **Identify gaps**, develop requirements and **recommendations** for advanced monitoring solutions

 - Complete
Cyber Resilience is part of GE’s Culture and DNA - With over a third of the world’s power and a large percentage of operational technology in critical energy infrastructure, GE has distilled these unique data sets, into transformative cyber intelligence supporting next gen advanced threat detection, mitigation and recovery research, development and implementation.
Cyber Physical Architecture
Cyber Physical Detection System

Cyber physical attack detection, localization and neutralization

Control System Architecture with Cyber-Physical Detection

Cyber-Physical Protection

Control System & Plant
Cyber Resilience Game Changer: Validated And Verified Neutralization Capability On Largest Full Speed, Full Load Test Facility In The World!

Test Stand 7 – 9HA.02 FSFL Validation

Test Stand Design

- Greenville Test Stand
 - >$300MM GE Investment
 - >4k Instruments

- 9HA.02
 - >63% combined cycle efficiency
 - >500MW output in simple cycle

Digital Ghost Implementation

Cyber Attacks → Sensor Spoofing
Addition of bias to sensor signals

Successful Demonstration!
Challenges To Cyber-Physical System Integration

- Data communications for monitoring nodes
- System attack node definition
- System impact assessment
- System mode transients
- System nominal noise assessment
- Attack detection timing impact metric
- Reconfiguration timing impact metric
- Secure sensor monitoring nodes
- Time synchronization of monitoring nodes
Fault Tolerant Architecture
Next Steps

• Continue to build on the success of GE's ongoing DOE programs

• Research Machine Learning algorithms used in operating regions not originally included in training data

• Develop solutions to address node observability challenges that lead to poor resiliency performance

• Research methods to quantify assured, stable operations with resiliency functions
Next Steps

• Create methods for secure cross-domain communications and control

• Advance threat mitigation with improved cyber-attack detection and localization
Concluding Remarks

- Successfully demonstrated a cyber physical protection system on a physical test turbine

- Next step involves demonstration of technology on a fielded physical asset
 - Results will provide lessons learned and apply directly to strategic goals.
 - Productization of concept in process

- Cyber physical protection architecture applies to fossil fuel plants, natural gas pipeline distribution, wind turbines and a variety of industrial assets

- Clear need to continue to expand capability of and applications for cyber physical protection technologies