

HYBRID ANALYTICS SOLUTION TO IMPROVE COAL POWER PLANT OPERATIONS

DE-FE0031753

2020 Sensors and Controls Project Review Meeting

August 26, 2020

Randy Bickford Expert Microsystems, Inc.

PROJECT TEAM AND COAUTHORS

OBJECTIVE

Align with DOE's Fossil Energy Objective to create innovative solutions that integrate physics-based models with data-driven analytics and machine learning techniques to improve coal-fueled power plant operations

(DE-FOA-0001989 Topic 3A)

DESCRIPTION

New technology is developed to integrate an existing heat-balance modeling product with an existing advanced pattern recognition, machine learning and artificial intelligence product to create a hybrid online monitoring solution

- Completed solution is demonstrated at a utility-owned coal fired plant
- New Technology Elements are taken from TRL 2 to TRL 7

HYBRID ANALYTICS SOLUTION INTEGRATION OF TWO PROVEN TECHNOLOGIES

Expert Microsystems

MapEx Performance Monitoring

MapEx Software

- SureSense® Software
 - Leading-edge Advanced Pattern Recognition (APR) software

SureSense® Virtual SME ® Software

- Automated AI diagnostics
- Online remaining time to act estimates
- Broad Power Generation User Base
 - Coal, nuclear, CCGT, hydro & renewables
- Chemical & Refining User Base
 - Downstream oil and gas plants
- Established in 1996

- MapEx Software
 - Heat balance analysis
 - Data reconciliation
 - Equipment performance analysis
- Led by Dr. Rodney Gay
 - Original developer of GE GateCycle
 - (acquired by GE in 1999)
 - Author: "Power Plant Performance Monitoring"
- Installed at more than 25 sites globally
- Established in 2011

HYBRID ANALYTICS SOLUTION

IMPROVING PERFORMANCE & RELIABILITY

• Heat Balance (HB) Models

- Calculates "virtual" sensor information
- APR models "calibrate" HB models
- Advanced Pattern Recognition (APR) Models
 - Uses both measured and calc HB data
 - Compares Current State to Normal State
- Comprehensive Anomaly Detection
 - Early and accurate anomaly detection

• Diagnostics

- Both model-based & rule-based
- Use symptoms from both HB and APR
- Considers upstream/downstream info

• Prognostics

- Calculates remaining time to act
- Automatically updates with new information

IMPROVING POWER PLANT OPERATIONS

ENABLING EARLIER INTERVENTION TO PREVENT PROBLEMS

Improve Equipment Reliability

- Early detection of pending equipment issues
- Higher equipment availability
- Insights into issue causes

πααλληλη

Insights into remaining time to act

Improve Process Performance

- Early detection of performance issues
- Enhance/maintain optimal performance

Improve Plant Flexibility

- Expand operating envelope to accommodate renewables
- Safe and compliant transients

TYPICAL UTILITY M&D CONFIGURATION

SEPARATE PERFORMANCE AND RELIABILITY TEAMS / PRODUCTS

PERFORMANCE & RELIABILITY MODEL TYPES PRIOR STATE OF THE ART

Thermal Performance Models (e.g., OEM, PEPSE, EtaPRO)

- Based on first principle analysis and/or vendor curves
- Inputs: Operating point, component performance curves and/or 1st principle models
- Outputs: Expected values and performance based on design

Heat Balance Models (e.g., MapEx)

- Inputs: Measured values & laws of conservation of mass & energy
- Outputs: Actual performance based on current measurements and conditions
- Calculates values not directly measured ("virtual" sensors)

Advanced Pattern Recognition Models (e.g., SureSense)

- Data-driven models based on machine learning and historical data
- Inputs: Current measured and/or calculated values
- Outputs: Normal or expected value for each input value and residual difference
- Detects anomalies in current vs. normal state for each input

HYBRID HB/APR MODELS

COMBINE ADVANTAGES & REMOVE LIMITATIONS

HEAT BALANCE MODEL

Advantages

- Based on physics of process
- Calculates values not directly measured
- Best to explain cause
- Considers upstream or downstream impacts
- Includes infrequent operating conditions

Limitations

- Difficult to setup & configure
- Long run times
- May not converge for given time step
- Limited anomaly detection
- Considers only current data

APR (DATA-DRIVEN) MODEL

Advantages

- Easy to setup & configure
- More accurate predictions
- Highly sensitive anomaly detection
- Detects Abnormal states
- Considers historical relationships between data Limitations
- Normal state defined by training dataset (operating envelope)
- No inherent basis to explain cause
- No consideration of upstream or downstream impacts

HYBRID MODELS DETECT PROBLEMS SOONER MODEL RESIDUALS ARE MINIMIZED FOR NORMAL BEHAVIOR

Heat balance models have modeling error/noise that makes it difficult to clearly detect an anomaly through the "normal" noise or variance.

Data-based APR models have lower "normal" residuals & therefore can detect anomalies easier & earlier.

Hybrid models (APR+Heat Balance) have the lowest residuals and most accurate anomaly detection

RESIDUAL DISTRIBUTION COMPARISON HYBRID MODEL HAS BEST RESIDUAL DISTRIBUTION

HYBRID MODEL

- Less Bias (lower mean)
- Lower Standard Deviation

BENEFITS

- Tighter Thresholds
- More Sensitivity
- Earlier Detection
- Fewer False Alarms

CURRENT STATUS OF PROJECT

FOUR TECHNICAL TASKS (MONTH 10 OF 24)

COAL-FIRED PLANT HEAT BALANCE MODEL *INPUT – OUTPUT MAPPING EDITOR*

iew Project Run Tools	Report Help Design Derived Tag I	ditor		
erved Tags				
ved Tags		Derived Tag Editor		
IR:CpDrvgas				
IR:CoWetgas	SureSense 6_1 \workingL	vir\Documents\SureSense 6.1\MapEx	Escalante Plant Model.xi	
IR:Hoas				
ID: Heefaar	HeatBalance Var Filter	flow rate Tag Filter		
ID.I CE				
IP:Danc	Variable	Description	Input Tag	
ID DLO and	MyPlant:BoilerCycle:All	R/W Case Flow rate at port and	TOTAL AIR FLOW	
	MyPlant:BoilerCycle:All	RHT Gas Flow rate at port air	NO MAPPING	
IK:RHgas	MyPlant:BoilerCycle:All	RHT Gas Flow rate at port gas	NO MAPPING	
IR:Tgas	MyPlant:BoilerCycle:All	RHT Gas Flow rate at port leak	NO MAPPING	
IR:Trefgas	MyPlant:BoilerCycle:BC	ILE Gas Flow rate at port gas	NO MAPPING	
IR:Wgas	MyPlant:BoilerCycle:BC	ILE Fuel Mass Flow Rate	NO MAPPING	
IR:Xfuelgas	MyPlant:BoilerCycle:BC	ILE Fuel1 Mass Flow Rate	NO MAPPING	
IR:Ihvgas	MyPlant:BoilerCycle:BC	ILE Fuel2 Mass Flow Rate	NO MAPPING	
IR:mfARgas	MyPlant:BoilerCycle:BC	ILE Fuel3 Mass Flow Rate	NO MAPPING	
ID:mfCUVaar	MyPlant:BoilerCycle:Co	IdR Steam-Water Mass Flow Rate	NO MAPPING	
	MyPlant:BoilerCycle:DR	UM Steam Outlet Mass Flow Rate	NO MAPPING	
ik:mrcO2gas	MyPlant:BoilerCycle:EC	ON Gas Flow rate at port gas	NO MAPPING	
IR:mfCOgas	MyPlant:BoilerCycle:EC	ON Water Outlet Mass Flow Rate	NO MAPPING	
IR:mfH2Ogas	MyPlant:BoilerCycle:Fe	edw Steam-Water Mass Flow Rate	NO MAPPING	
IR:mfH2gas	MyPlant:BollerCycle:PR	Gas Flow rate at port gas	NO MAPPING	
IR:mfN2gas	MyPlant:BollerCycle:PR	Steam Outlet Mass Flow Rate	NO MAPPING	
IR:mfO2gas				
IR:mfSO2gas	•	00000 18 10 2000		

Connect real-time plant data to the MapEx model plugin

Model adjusts to use the available input tags

Heat Balance outputs are available as SureSense derived tags

Available for use in datadriven models, diagnostics & prognostics

EXAMPLE RESULTS FOR A COAL-FIRED PLANT

× CM.BOILERFUEL:Wfuel: vs. CM.BOILER:EFF: Operating

FUTURE GOALS AND OPPORTUNITIES

- The Hybrid Analytics Platform offers an unprecedented opportunity to implement comprehensive automated online diagnostics and remaining life prognostics for all types of power generation equipment
- Model-Based Al Methods (e.g., Bayesian Belief Networks) can learn complex data relationships and capture subject matter expertise
 - Probability-based decision tree
 - Ideal for complex & multi-symptom failure modes
 - Uses performance AND reliability symptoms for holistic diagnosis
 - Uses upstream and downstream symptoms for diagnosis
 - Can be combined with simple rules when applicable

SIMPLE EXAMPLE

MODEL-BASED DIAGNOSTIC MODEL

The Diagnostic Model manages the relationships between multiple symptoms & causes

DEPARTMENT OF ENERGY ACKNOWLEDGEMENT & DISCLAIMER

- This material is based upon work supported by the Department of Energy under Award Number DE-FE0031753.
- This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

SureSense[®] Virtual SME[®]

Powered by Expert Microsystems

