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Motivation: Flexible Operation and Extended Life

Source: www.caiso.com. 

CAISO Duck Curve[1]

Net demand = Grid Demand – Renewable energy production

▪ Renewable generation, demand response, 
and others require more operational 
flexibility from fossil energy power plants

– Lower minimum loads than considered in design

– Faster startup times and ramp rates

▪ Increased cycling operations are affecting:

– Equipment health and life expectancy

– Plant downtime and operations & maintenance

– Plant performance, efficiency, emissions

▪ Avoiding downtime more important for 
plant profitability than ever

– Tube failures are traditionally the number one 
cause of forced outages of power generating units 
worldwide

– Needs better predictive approaches
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Opportunity: Predicting Damage in Flexible Environment

• For predominantly base load conditions, 
maintenance successfully managed by 
statistical analysis, inspection, and RCA

• Demand response is often beyond the original 
design intent of a boiler

• Flexible operation involves complexities that 
require different LM approaches

• Over-temperature operation is a key driver for failure

• An on-line health monitoring tool can be instrumental in:

• Understanding the impacts of load and load changes on local metal temperature

• Steamside scale growth reduces heat transfer, increases metal temperature, and 
self accelerates

• Metal temperature increases accelerate creep damage: +25oF (15oC) will reduce 
life by 50%

• Help to schedule preventative O&M more effectively and 

• Leads to control strategies for flexibility without compromising safety and reliability

Implemented 
BTF Strategy

Actual Failure Rate Statistics from one Company Compiled data 
used to be available from NERC / GADS
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Our Approach: A Hybrid First-Principles-AI Based Approach

• Advantages of first-principles and mechanistic models:

• Satisfies mass, momentum and energy balances

• Can be predictive

• Can provide spatial and temporal resolutions of practically all variables including those that cannot 

be measured (e.g., through-wall temperature of a SH tube)

• Disadvantages of first-principles model

• Can be difficult to develop for a number of complex phenomena in boilers

• e.g., external fouling, internal deposit in boiler tubes

• Advantages and Disadvantages of Artificial Intelligence (AI) models

• Mostly opposite to the first-principles models

• This projects seeks to exploit strengths of first-principles and AI models synergistically

• However, the complex phenomena of interest in boilers are uncertain and time-varying

• Must take the measurements into account

• End goal is to develop an on-line health monitoring tool
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Project Objectives (Tasks)

• Task 1.0 Project Management and Planning 

• Task 2 – Hybrid Model Development, Validation, and Implementation at Plant Barry (mainly WVU)

• Subtask 2.1 – Plant Data Evaluation

• Subtask 2.2 – Adapting the First-Principles Model to Plant Barry

• Subtask 2.3 – Development and Validation of the Bayesian ML Model 

• Subtask 2.4 – Development and Validation of the Gaussian RBF Model

• Subtask 2.5 – Modification and Implementation of the Optimal DAE Estimator

• Subtask 2.6 – Evaluation and Testing of the Hybrid Model at Plant Barry

• Task 3 – Validation and Integration of Hybrid Model at Plant Barry (mainly EPRI with Southern)

• Subtask 3.1 – Project Management

• Subtask 3.2 – Initialize the Model with AUSC Steam Loop Exemplar

• Subtask 3.3 – Collect a Snapshot of Southern Company Host Site Operation

• Subtask 3.4 – Pilot Demonstration of Model

• Subtask 3.5 – Enhance Software
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Optimal Estimator

• Multi-Rate Dual Filtering Approach for Nonlinear Differential Algebraic Equation Systems1,2

• Key enabling approach for health monitoring 

• Incorporates adaptive sampling rate for slow variables 

1Huang Q, Bhattacharyya D, Computers & Chemical Engineering, 141, 106985, 2020
2Huang Q, Bhattacharyya D, Industrial and Engineering Chemistry Research, 56, 9858-9867, 2017

ሶ𝑥 𝑡 = 𝑓 𝑥, 𝑦, 𝑢, 𝑤, 𝑡 ; 𝑔 𝑥, 𝑦, 𝑡 = 0

𝑧 = ℎ 𝑥, 𝑦, 𝑣, 𝑡 ;                 with 𝑤~ 0, 𝑄 ,  𝑣~ 0, 𝑅
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First-Principles Model

• Development of first-principles models

• Focus on reheater/superheater

• Developing spatially distributed, dynamic, partial differential algebraic models

• Based on mass, momentum, and energy balances

• Thermal hold up in tubes and tube through-wall temperature dynamics are modeled

• Validation with the plant data

Water Flow Direction

Flue Gas Flow Direction

Finishing SH of a SCPC plant ramped from 100% to 60% 

at 1 h (5%/min) then back to 100% at 3 h (5%/min)
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Bayesian Machine Learning

• Bayesian Machine Learning (ML)

• Ash deposit and internal scaling are time-varying and stochastic. 

• A Bayesian ML framework has been developed for learning time-varying stochastic systems1,2 

(funded by DE-FE0012451)

1Bankole S, Bhattacharyya D, Journal of Process Control, 71, 116-129, 2018 
2Bankole S, Bhattacharyya D, Chemical Engineering Science, 203, 475-488, 2019

𝜋 𝜃 𝑦 =
𝑙 𝑦 𝜃 p 𝜃 

𝑚 𝑦 
 where  𝑚 𝑦 =  𝑙 𝑦|𝜃 p 𝜃 𝑑𝜃

Θ
 

 
𝑦 ∗,𝜃∗ = max

𝑦 ,𝜃
𝑝 𝑦 ,𝜃|𝑦  
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Prior Works at WVU

• Bayesian Machine Learning (ML) Approach Validation1,2

o Performance for the NETL HyPer facility

for the NETL HyPer Facility

1Bankole S, Bhattacharyya D, Journal of Process Control, 71, 116-129, 2018 
2Bankole S, Bhattacharyya D, Chemical Engineering Science, 203, 475-488, 2019
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Dynamic and Probabilistic NN

• Gaussian Radial Basis Function (RBF) Network

• A Gaussian adaptive RBF will be developed

• Currently deterministic hybrid static-dynamic networks have been 

developed

• Efficient solution algorithms for these hybrid structures are being 

developed 

Hammerstein-Type Network Wiener-Type Network
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Hybrid Static-Dynamic NN

• A fully Newtonian approach is developed for solving the NN

• For a reactive system, the Hammerstein-type network takes about half the number of iterations and yields 

mean squared error that is about two order of magnitude superior compared to the Wiener-type network
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Task A: Building on a Simple Demonstration 
▪ Starting with the AUSC Steam Loop 

– Demonstration loop in AUSC Boiler DOE 
project

– Single loop, known inlet and outlet just to this 
loop

– Ni-based materials and stainless steels 
minimize the impact of oxide growth over the 
duration

– Uniform heat transfer (single plane in the 
boiler)

– Stainless steel rings provide a way to 
benchmark local temperature in ~five place

▪ Key Objectives:

– 1D prediction of mean wall temperature 
distribution along the length

▪ What do we know:

– Geometry (length, bends, wall thicknesses)

– Materials along length and physical properties

– Operational data from 2012 – 2014 

▪ Steam inlet and outlet temperature with time

▪ Steam pressure and flow through the loop

▪ Gas temperature outside the loop (!)

▪ What do we not know:

– Temperature along the length (to be predicted)

▪ Can estimate based on the oxides and 

metallurgy in Super 304H samples

– Heat flux can be estimated via this model 

prediction
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Plant Barry AUSC Steam Loop

▪ Plant Barry operated a high temperature (>700C) steam loop for 2.5 years

▪ This work becomes baseline for physics-based model

– Well documented operational history from Barry plant historian

– Uniform external gas temperature along the length (measured!)

– Stainless steel used in the loop can be a benchmark for temperature

▪ Metallurgical characteristics estimate effective temperature

– Time dependent features describe the actual time-varying operational temperature

– Includes: oxide scale thickness, extent of creep damage, sigma phase formation, etc.

22

Part of AUSC Boiler Project FG26-01NT41175
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Roadmap of Factors for Estimating Temperature

Steam Pressure

Mass Flow Rate

Circuit Geometry

Inlet & Outlet Steam 

Temperatures

Penthouse 

Thermocouples

Penthouse steamside 

oxide thickness

Service hours

Peak Heat Flux

Heat Transfer 

Coefficient

Local Bulk Steam 

Temperature

Midwall Metal 

Temperature

Sigma Thickness

Effective Stress

Creep Rupture Tests

Damage Fraction

Equivalent void 

Parameter

Remaining Life

Wastage Rate

Design and Operation

Measurements

Calculation

Characterization and Testing 
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Super 304H Tube Section 1A – Hot Side

Measured

▪ Unlike oxide scale from a ferritic material, the 
steam oxide in an austenitic steel is complex

– non-uniform scale with oxide nodules 
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Task B: Applying the Simple Model to Relevant Tubes 

▪ Take thermal model from AUSC Steam Loop, 
apply it to a row of superheater tubes to predict 
mean metal temperature

▪ B1: Start with a window of steady-state operation

– Real boiler configuration with temperature distributions 
along the width of the boiler

– Steady-state conditions expected to be more uniform

▪ B2: Real operational data over transients, low load

– This is where steam flow and flue gas flow may 
diverge across the width of the boiler

– Anticipated to produce temperature peaks and 
excursions in different tubes

▪ What we know:

– Geometry, materials, and TC locations

– One-to-one correlation between inlet and outlet TCs

– Oxide thermal conductivity (do we need more 
accuracy?)

– Oxide growth rates

▪ What we do not know:

– Actual wall thickness of these tubes

– Interpolating on the tubes where we don’t have TCs

– External, local gas temperature

With operational data we can perform this 
analysis, but it will require in-service validation

SH Inlet

SH Outlet



Validation: Barry Unit 5 Boiler Layout



Validation: Barry Unit 5 Boiler Layout



Final Superheater “Pendant Spaced Superheater”

• Current configuration is all 347H and not ideal for project
• Project aims to capture the influence of oxide growth on temperature
• 347H not expected to show significant oxide growth between outages (~2 

years)

• The project will use this opportunity to install hardware and produce a 
controlled experiment
• Propose replacing lengths of tubes with T22 with installed TCs
• Considering options for optimal placement of installed hardware

• Is strictly the hottest length of most interest, and most economical
• And which tube(s) along the width of the boiler: edge vs. center

• Considering options for temperature sensors
• Traditional TC wires on the surface or mid-wall
• Commercial TC heat flux sensors
• Coaxial cable sensors with Clemson’s DOE project
• Biggest challenge is the need to protect wire leads

• Project planning for a Fall 2021 outage 

3 ft
1m
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Conclusions

• Boiler tube life management is an expensive industry issue

• Scheduling maintenance becoming less predictable with flexible 
operation

• Temperature fluctuations across rows of tubes a large unknown

• Metal temperature drives damage accumulation 

• The hybrid first principles-AI approach provides take advantages of 
synergies between physics-based and data-driven modeling

• Validation of Model Predictions:

• Pursuing several approaches through monitoring, independent 
modeling, and characterization 

• Plant Barry partnership a great opportunity
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