Application of Biosorption for REE Recovery from Coal Byproducts

Yongqin Jiao, Lawrence Livermore National Laboratory September 16th 2020

LLNL-PRES-XXXXX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Project Description and Objectives

Collaboration among LLNL, Duke U. and U. of Arizona

Yongqin Jiao Dan Park Ziye (Jesse) Dong Helen Hsu-Kim Andrew Middleton

Hongyue Jin Majid Doolabi Navajo Transitional Energy Company

SCIENTIFIC INNOVATION THROUGH INTEGRATION

Project Description and Objectives

Project Highlights from FY20

- New postdoc Ziye (Jesse) Dong started at LLNL Oct 2019
- Hongyue Jin received a Rising Star Award from the American Center for Life Cycle Assessment
- Two graduate students, Andrew Middleton and Majid Alipanah, are supported at Duke U. and U. of Arizona, respectively.
- Three publications in peer-reviewed journals:
 - International Journal of Coal Geology, Volume 227, 103532, 2020 (Middleton et al, 2020)
 - Separation and Purification Technology, Volume 241, 15: 116726, 2020 (Park et al, 2020)
 - ACS Substantiable Chemistry & Engineering, Submitted (Alipanah et al, 2020)

Ziye (Jesse) Dong LLNL

Project Description and Objectives

A REE-selective biosorption approach to enrich and concentrate the REEs from leachate solutions of coal byproducts

Patented technology

Goal: develop a cost-effective and environmentally sustainable biosorption technology for REE recovery from coal byproducts

- Completed leaching method development and biosorption tests among feedstock (lignite, PRB fly ash, Navajo coal refuse) with decision point made about feedback selection
- Developed Si Sol-gel cell encapsulation that is scalable and less expensive with higher mechanical strength than PEGDA
- Developed a two-stage Sc and REE recovery process
- Completed TEA for Si Sol-gel cell immobilization for rare earth recovery

NATIONAL ENERGY TECHNOLOGY LABORATORY

Acid leaching of PRB fly ash followed by pH adjustment to prepare for input solution for biosorption

1) Leachable REEs vs pulp density

Middleton et al, International Journal of Coal Geology 2020

Duke

NATIONAL ENERGY TECHNOLOGY LABORATORY

Acid leaching of PRB followed by pH adjustment to prepare for input solution for biosorption

1. Acid leaching of PRB fly ash at various pulp densities

pH .51 0.98 2.20 2.91 4.05 5.18 6.78

2. pH adjustment after acid leaching

Middleton et al, International Journal of Coal Geology 2020

NE NATIONAL ENERGY TECHNOLOGY LABORATORY

Pulp density is a key factor for selective solubilization of REEs against AI, Fe, and Si in PRB fly ash

Soluble REEs are influenced by Fe- and Al-hydroxide precipitation, not REEhydroxide minerals.

U.S. DEPARTMENT OF

Middleton et al, International Journal of Coal Geology 2020

- **NE NATIONAL ENERGY** TECHNOLOGY LABORATORY

pH adjustment above 5 decreases REE solubility

Aqueous metal concentrations after adjusting the pH of leachates generated from three feedstock after leaching at a pulp density of 100 g/L.

Middleton et al, International Journal of Coal Geology 2020

Stoplight chart on feedstock decisions based on compatibility with biosorption

Feedstock type	Location	REE content (ppm)	Leaching efficiency	Leachate purity	Sorption efficiency	Product purity
Lignite	North Dakoda, ND	551				
Fly ash	Power River Basin coal	296-399				
Fly ash	Appalachian Basin coal	655-703				
Coal refuse	Navajo Indian Reservation AZ	175-210				

medium

low

Develop a flow-through biosorption process

Dong et al, manuscript in preparation

Developed scalable Si Sol-gel sorbent by microbe encapsulation

Si-sol gel microbe particles

Dong et al, manuscript in preparation; Images courtesy of EMSL at PNNL

ATIONAL

TECHNOLOGY LABORATORY

NATIONAL ENERGY TECHNOLOGY LABORATORY

REE and Sc solubility of lignite leachate upon pH adjustment

- $_{\odot}\,$ Lanthanides are soluble up to pH 5 $\,$
- \circ Sc is soluble only up to pH 4

I.S. DEPARTMENT OF

13:14

14

Sc is an important revenue source in coal byproducts

Plant operation assumptions (200 ktonnes/year)Debt/equity (Capital)60/40Term of debt financing10 yearsInterest for debt financing8% per annuaPlant Life20 yearsDepreciation periods7, 15, 39 yeaIncome tax rate27%Start up time6 monthsOperating time8000 hours/y

Project Update

ENERGY

Based on 35.4 ppm Sc in lignite (Laudal, 2017); Sc oxide price: \$4,600/kg (USGS, 2019)

Alipanah et al, ACS Substantiable Chemistry & Engineering 2020

Sc

NATIONAL ENERGY TECHNOLOGY LABORATORY

Two-stage sequential recovery of Sc and REEs

Dong et al, manuscript in preparation

Biosorbent is stable for reuse

Sc adsorption at pH 3

90.0-102 % capacity retained after 10 cycles

NATIONAL ENERGY

Dong et al, manuscript in preparation; Images courtesy of EMSL at PNNL

U.S. DEPARTMENT OF ENERGY

Dong et al, manuscript in preparation

17

Project Update Sc is preferentially extracted from a synthetic lignite leachate at pH 3

Synthetic lignite leachate, pH 3

Breakthrough curve

U.S. DEPARTMENT OF

Dong et al, manuscript in preparation

Project Update

NE NATIONAL ENERGY TECHNOLOGY LABORATORY

A single round of biosorption produces high purity mixed REEs from lignite and PRB fly ash, but not Navajo coal refuse

High AI precludes high purity REE recovery in Navajo leachate.

Park et al, Separation & Purification Technology 2020

NATIONAL ENERGY TECHNOLOGY LABORATORY

Overall process flow diagram used in TEA

U.S. DEPARTMENT OF ENERGY

Alipanah et al, ACS Substantiable Chemistry & Engineering 2020

TEA summary and comparison with competing technologies

Data source	Feedstock	REE content (ppm)	REO output quality	REO basket price (\$/kg)	Total cost (\$/kg REO)	Profit rate
Our study	PRB fly ash	337	95% TREO	16	1,518	-99%
Our study	ND lignite	551	95% TREO	338	292	18%
Das et al. (2018)	Coal ash	608-934	Individual REO	577-1,150	680-2,545	-73%~30%
Zhang & Honaker (2018)	Coal coarse refuse KT	7	94% TREO	N/A	34	N/A
Carlson (2018)	Louisville fly ash	480	TREO	33	2,669	-99%
Peterson et al. (2017)	Ohio fly ash	532-558	Individual REO	179	235	-24%

Alipanah et al, ACS Substantiable Chemistry & Engineering 2020

Alipanah et al, ACS Substantiable Chemistry & Engineering 2020

Material cost breakdown – acid consumption is a major cost factor for PRB

Project Update

ENERGY

Preparing Project for Next Steps

Transitioning and scale-up into bench-scale production

Market Benefits

- Fill a technology gap by converting coal byproducts to REE concentrate intermediate that can be further refined by existing technologies
- Provide an environmentally friendly alternative for REE recovery and refinement.

Technology-to-Market Path

- Improve on economics and transition towards scale-up
- Engage with partners to scale up biosorbent production
- Integrate packed-bed bioreactors within NETL pilot programs
- Potential industrial partners: La Paz Rare Earth Project, Solvay, Drylet

Preparing Project for Next Steps

Silica gel monolith for scale-up

Concluding Remarks

Develop REE-selective biosorbent to enrich for REEs and Sc from acid leachate of coal byproducts

- Provide an economical and environmentally friendly option for enriching and concentrating REEs from coal byproducts, with decision points made:
 - Feedstock selection lignite and PRB fly ash
 - Cell immobilization strategy Si Sol-gel
 - Two-stage Sc and REE+Y recovery
 - A TEA informed process design
- Next steps for tech development
 - Complete 2-stage Sc and REE+Y recovery tests with feedstocks
 - Convert solution upon desorption into solids
 - Transitioning and scaling to bench scale production

In FY21 we will achieve an extraction efficiency of >80% and total REE purity >20 wt% from pre- and post- combustion coal byproducts.

Acknowledgements

Collaboration among LLNL, Duke U. and U. of Arizona

Dan Park

Park

Helen Hsu-Kim

Hongyue Jin

This research is supported by the Department of Energy, Office of Fossil Energy DE-NETL Rare Earth Program under award DE-FWP-LLNL-18-FEW0239; and performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DEAC52-07NA27344.

