Evaluation of Novel Strategies and Processes for Separation of Rare Earth Elements for Coal-Related Materials (Project FE-810-17-FY17)

DOE-NETL's 2020 FE R&D Virtual Project Review Meeting: Rare Earth Elements and Critical Materials

Janelle Droessler and George S. Goff (PI)

09-16-20

LA-UR-20-27222

EST.1943

LANL Project Team

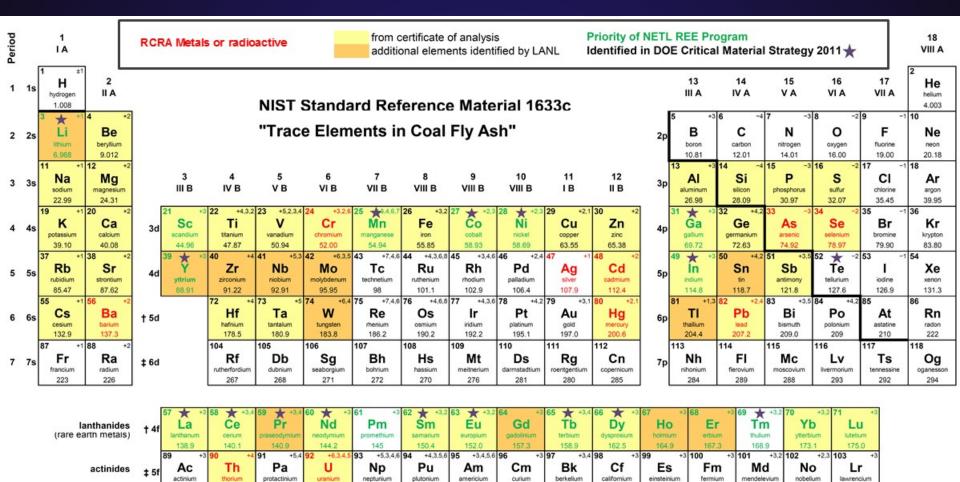
- Hakim Boukhalfa, biogeochemistry
- Kevin Boland, analytical chemistry
- Janelle Droessler, inorganic chemistry
- George S. Goff, chemical engineering
- George Guthrie, mineralogy and geochemistry, coordination with LIBS analysis project
- Nicholas Hubley, inorganic chemistry
- Christopher Leibman, inorganic chemistry
- Iain May, inorganic chemistry
- Artas Migdissov, hydrothermal geology
- Michael Rearick, analytical chemistry
- Kirk Weisbrod, chemical engineering
- Giday WoldeGabriel, geology
- Laura Wolfsberg, solids characterization
- Steven Yarbro, chemical engineering

Project Overview and Objectives

Overall Goal: Evaluate emerging separations technologies for REE separation

- Conduct a preliminary evaluation of these innovative (lower TRL) processes
- May include limited experimental evaluation to demonstrate proof-of-concept
- Analysis will include a consideration of gaps and limitations that need to be overcome for commercialization
- Leverage existing LANL expertise in chemistry and separations of *f*-elements
 - Extensive expertise in radiochemistry (quantitative analysis of actinide containing samples), special nuclear material purification and production (oxides and metals), nuclear fuel cycles, & fundamental science.
 - Common separations techniques include solvent extraction, ion exchange, and precipitation

Initial work focused on three thrusts:


- 1. Hydrothermal methods for extraction and separation
- 2. Supercritical CO_2 and soluble ligands for simple and effective separation
- 3. Ionic liquids and process intensification for novel separations
 - Examples of on-going LANL related research using ionic liquids:
 - *Process intensification* of solvent extraction separations for purification of Pu, low-temperature electrochemical recovery of Pu metal from waste residues
 - Nuclear fuel cycle: actinide/lanthanide separations for fuel recycling
 - Fundamental science: electrochemical separations in ionic liquids, electrodeposition

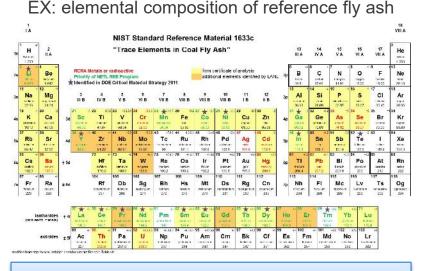
Program review in March 2019 resulted in down-select to focus on Thrust 3 and added a task on novel dissolution/leaching chemistry using ABF

Motivation

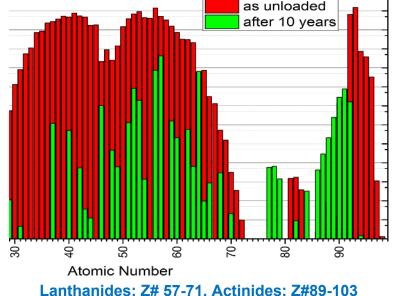
- Fly ash is an inhomogeneous solid with both organic and inorganic phases
 - Class C fly ash is high in Calcium, Class F is low in Calcium
 - Organic fraction is primarily unburned carbon
 - Inorganic fraction is primarily amorphous glass, contains AI, Si and Fe oxides
 - REEs believed to segregate into the aluminosilicate phases
- Novel selective dissolution chemistry could:
 - Reduce amount of harsh chemicals and reaction conditions (e.g. safer and cheaper)
 - Concentrated acids, HF/HNO₃, alkali fusion, etc.
 - Simplify downstream separations via selective dissolution
 - Avoid heavily corrosive chemicals (HCI)
 - Be integrated into existing flowsheets to replace conventional leaching/dissolution steps, or serve as the basis for a novel process flowsheet.

Periodic Table of Fly Ash

modified from http://www.mrbigler.com/documents/Periodic-Table.xls


232.0

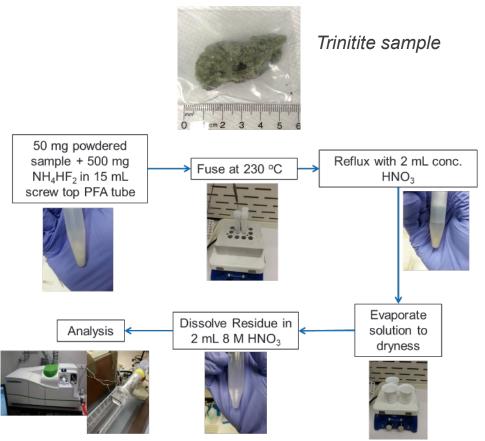
231.0


238.0

Used Nuclear Fuel vs Fly Ash

- Complicated, hard to dissolve matrices (typically oxide based)
- Large distribution of trace elements
- Minor actinides (*e.g.*, Am, Cm) behave like lanthanides (predominantly +III)

Rare Earth Elements play a key role: valuable products in fly ash, unwanted neutron poison in nuclear fuel EX: Distribution of radioactive elements in used fuel from a molten-salt fast reactor

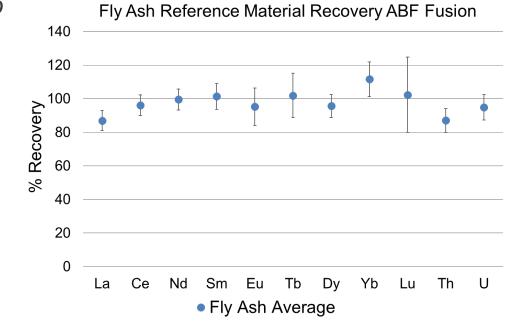


9/16/2020

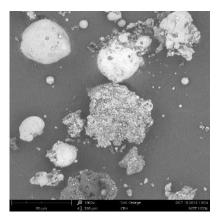
Why Ammonium Bifluoride (ABF, NH₄HF₂)?

ABF was studied as an alternative for processing the refractory phases such as silicate based glass phases formed within post-det debris

- Used as a fluorinating agent
- Fusion with ABF has been used for analytical nuclear forensics sample dissolution (Nick Hubley & Chris Leibman)
 - Variety of sample types including post-det debris total dissolution, and quantitative recoveries
 - U. Missouri, LANL, others
- Developed as an analytical-scale method for quantitative analysis

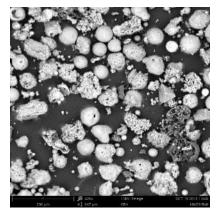


ABF Fusion of NIST 1633c Coal Fly Ash

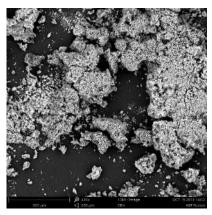

Does the ABF fusion translate to coal fly ash?

- Achieved high/quantitative recovery of the REEs
- Large amount of residue left after the procedure
 - Total dissolution not achieved

Believed most REEs associated with aluminosilicate phase



SEM/EDS analysis of fly ash residue


NIST 1633c unreacted

Element	Atomic	Weight	Stoich.
Symbol	Conc.	Conc.	wt Conc.
0	71.64	57.82	
Si	10.97	15.54	36.84
Al	7.42	10.10	23.96
С	4.79	2.90	6.88
Fe	3.97	11.19	26.53
K	1.06	2.09	4.96

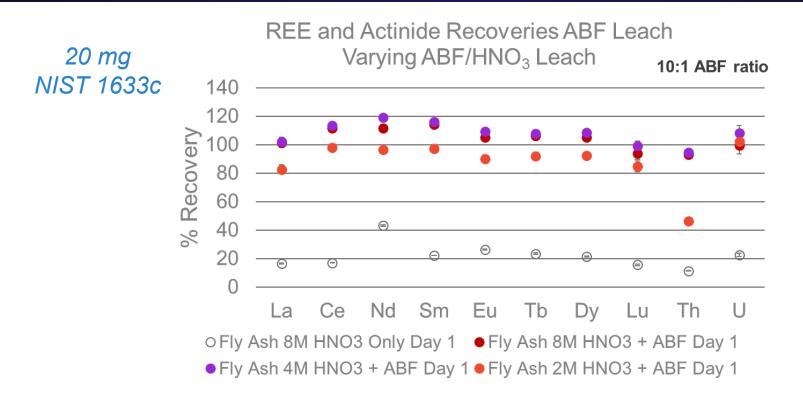
NIST 1633c boiled in HNO₃

Element	Atomic	Weight	Stoich.
Symbol	Conc.	Conc.	wt Conc.
0	60.29	54.43	
С	24.48	16.59	36.40
Si	7.38	11.70	25.68
Al	5.88	8.95	19.64
Fe	1.27	3.99	8.77

NIST 1633c ABF fusion

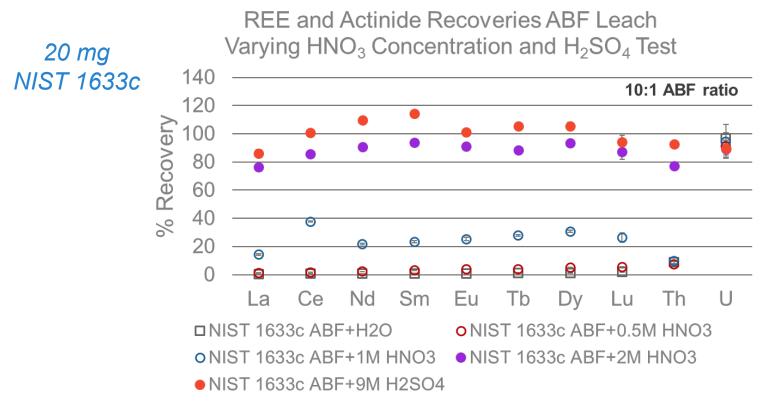
Element	Atomic	Weight	Stoich.
Symbol	Conc.	Conc.	wt Conc.
F	73.68	69.36	69.36
AI	11.31	15.12	15.12
N	11.11	7.71	7.71
Fe	2.41	6.66	6.66
С	1.45	0.86	0.86

ABF targets the silicate phase within fly ash allowing REE recovery, more effective than boiling concentrated HNO₃

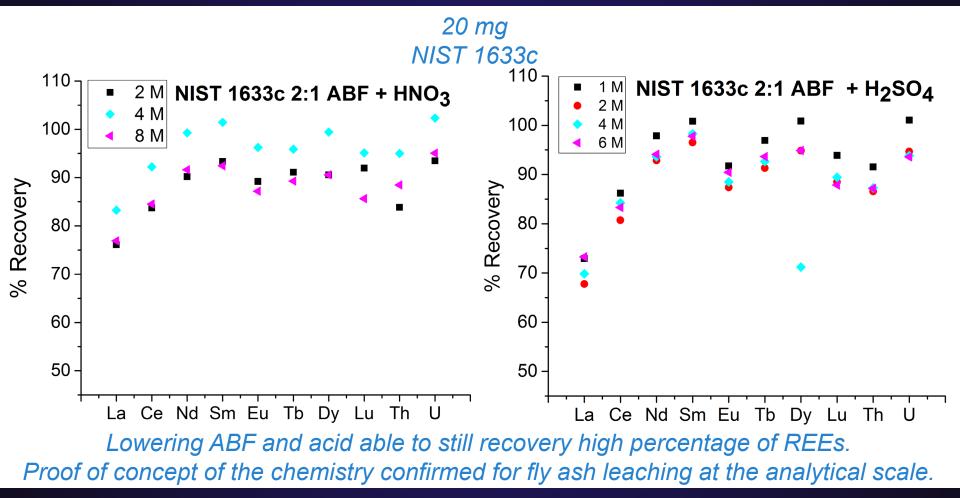

ABF Leaching of Fly Ash

Assessment of efficacy of ABF leach as a targeted chemistry for REE recovery from fly ash

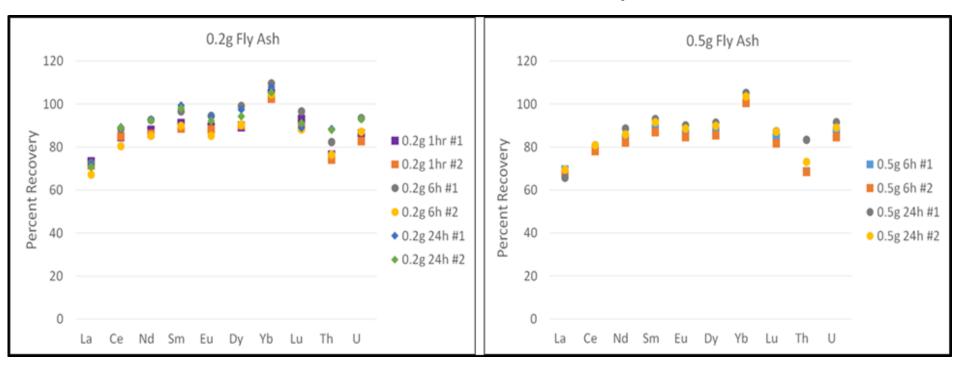
- Room temperature reaction of fly ash with a solution of ABF and HNO₃ or H_2SO_4
- Varied ABF to fly ash mass ratio (10:1, 2:1, 1:1, 0.5:1)
- Varied acid concentration
- Fly ash and ABF/acid solution stirred
- Studied reaction time
 - Quantitative recovery of REEs within one day, high recovery within hours
- Used NIST 1633c fly ash to evaluate REE recoveries
- Provisional Patent filed in March, 2020:


METHOD EMBODIMENTS FOR EXTRACTING ELEMENTS FROM COAL COMBUSTION PRODUCTS, U.S. Provisional Patent App. No. 62/989,497

ABF Leaching of Fly Ash: analytical scale

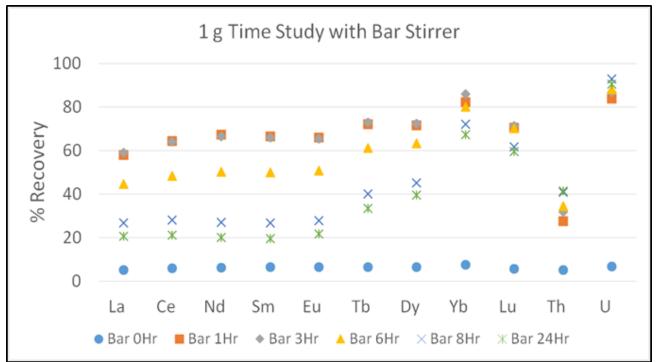

ABF increases recovery to near quantitative recovery of REEs from coal fly ash at room temperature leaching compared to high HNO₃

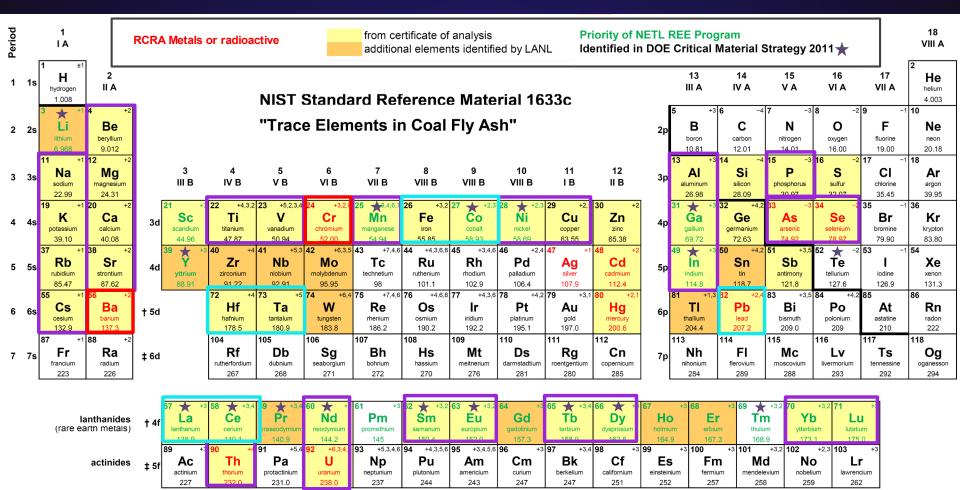
ABF Leaching of Fly Ash: analytical scale


High recovery of REEs using ABF with 2 M HNO₃

Leaching of Fly Ash: Reducing reagent

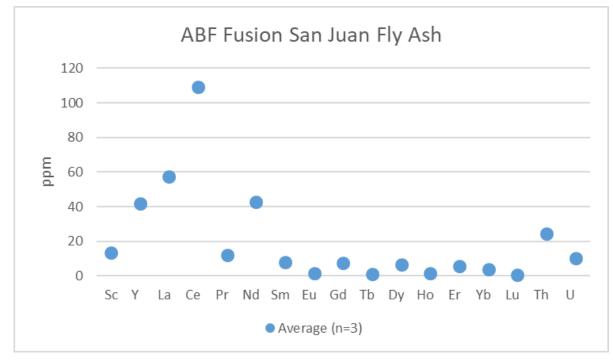
Leaching of Fly Ash: Increasing sample size/various contact times


2:1 mass ratio of ABF : NIST 1633c fly ash


High percentage of recovered REEs occur within 6 hours. Initial proof of principle to start scaling up from analytical size samples.

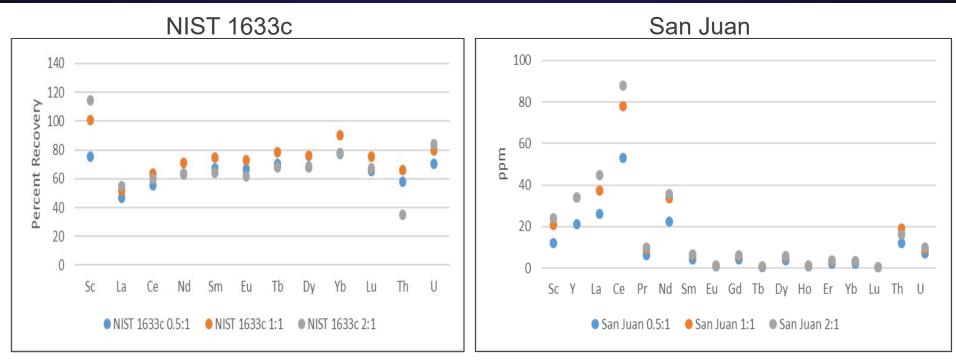
Leaching of Fly Ash: 1 g sampled over time

2:1 mass ratio of ABF : NIST 1633c fly ash



High percentage of recovered REEs occur within 1-3 hours. Possible REE fluoride or oxyfluoride precipitation at longer times.

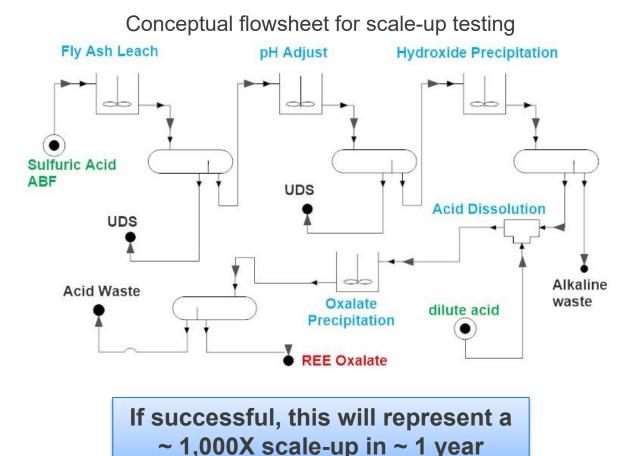
modified from http://www.mrbigler.com/documents/Periodic-Table.xls


San Juan Fly Ash (NM) analysis: Fusion method

Total REEs + Sc + Y = 313 ppm

Analytical determination of REEs from NM sourced fly ash, for use in REE leach scale up demo. Ran in parallel to NIST 1633c for verification of method.

San Juan Fly Ash: 1 g, 6 hr Leach comparison


San Juan fly ash REE %

Lower ABF can also be effective for REE recovery. Minimizing reagents and acid will benefit process economics.

Recovery 0.5:1 ratio = 51% 1:1 ratio = 76.5% 2:1 ratio = 84.8%

Scale-up Demo

- Scale-up demo currently underway.
- Fly ash leach tests performed using 10-50 grams of fly ash for proof of principal.
- Leach solution is 2 M H₂SO₄ with 0.9 M ABF.
- Dissolution testing with both NIST 1633c and San Juan fly ash (NM).

ABF Leaching of Fly Ash Conclusions

- Able to quantitatively recover REEs and actinides
 - Effective for targeted recovery from aluminosilicate fraction
 - Complete dissolution not necessary
 - Novel dissolution chemistry can be integrated into existing process flowsheets or serve as the front end of new process flowsheets
- Acid
 - 2 M HNO₃
 - $1 \text{ M H}_2\text{SO}_4$ equally effective for REEs
 - More cost effective acid
 - lowered dissolution of other unwanted metals (Cr, Pb, Ba, and lesser extent Fe and Al)
- Reagent
 - 2:1 ABF ratio most often used
 - Similarly high selective recovery of REEs, some increased
 - recent reduction to 1:1 and 0.5:1
 - 75% recovery of REEs + Sc + Y for 1:1 reagent to fly ash mass ratio

ABF Leaching of Fly Ash Conclusions

- Scale up of sample size
 - 20 mg to 1 g leach (50x scale up from analytical scale)
 - REE recovery >70%
- Time
 - Majority of recovered REEs achieved within 2 hours
 - >85% REEs recovered in 6 hours at 0.2 g and 0.5 g sample sizes
- Scale up demo (in process)
 - multi-gram fly ash leach demo as proof of concept of the chemistry towards kg scale
 - Chemistry could fit into similar flow sheet for initial REE recovery from alternative REE resources such as fly ash
 - Characterization of % REE in resulting mixed REE product

Additional options as feed for REE separations based upon novel LANL contactors

21

Thank you!