

Field-Based Quantification of Methane Emissions from Natural Gas Infrastructure

RIC Methane Emissions Quantification Program

Virtual Project Review Meeting - October 28, 2020

Natalie Pekney, PhD Geo-Analysis and Monitoring Team, NETL

NETL Research and Innovation Center's Methane Emissions Quantification Program

• OBJECTIVE

• Characterization/quantification of emissions from natural gas infrastructure

• APPROACH

- Obtain a comprehensive data set for selected natural gas components/facilities
- Research and field efforts concentrated on characterizing:
 - Abandoned and orphaned gas wells
 - Gathering system pipelines
 - Industrial and commercial metering stations
 - Ambient air quality impacts from unconventional natural gas development
 - Mapping buried steel flowlines using geophysical sensors mounted on drone aircraft

Methane Emissions from Abandoned Oil & Gas Wells

- Contribute measurable emissions of methane, a potent greenhouse gas
- Environmental, safety, and economic concerns
- Pennsylvania regulations now require land developers and oil and gas drilling operations to identify and properly seal wells within a 1000 foot buffer of the perimeter

Notes: Yellow (identify); Red (identify) and visually monitor); and Blue (no requirements); HF (well that is subject of area of review that will be hydraulically fractured)

Wellfinding Methods

- **NE NATIONAL ENERGY** TECHNOLOGY LABORATORY

Determining possible abandoned well locations prior to fieldwork

- Historical Survey: Database records, Farmline maps, Historical maps, Aerial photographs
- Remote Sensing: LiDAR, Aeromagnetics

Methane Emissions Measurements

Oklahoma – Summary of Results

• 179 wells measured

	Mean ± SD	Minimum	Maximum	Median	Coverage (%)	ρ to Observed Emissions
Distance to nearest earthquake (m)	5394 ±1139	3995	11123	5028	100	0.2851
Distance to nearest injection well (m)	1736 ±469	250	3097	1788	100	0.2004
Well depth (m)	142 ±16	63	170	148	63	-0.4266
Age (y)	52 ±28	12	105	50	83	-0.0250
Length of inactivity (y)	21 ±13	8	64	19	30	-0.0681

• Submitted to AGU Geophysical Research Letters

Methane Emissions Measurements

Kentucky – Preliminary Results

• 54 wells

	Methane EF (g/h/well)			
	This study	EPA GHGI		
Plugged	0.0 (n=1)	0.036 (29)		
Unplugged	1.1 (53)	30.57 (42)		

- Return trip
- Older wells

Databases are not reliable in the field

Determining possible abandoned well locations prior to fieldwork

 Magnetic surveys identify 46 - 59% more wells than recorded in state and national databases

Location	Size	No.	Magnetic Well	No. State	% Error	No. DI	% Error
	(km²)	Magnetic	Density	Database	Magnetic &	Database	Magnetic & DI
		Well	(wells/km²)	Well	State	Well	Database
		Locations		Locations	Database	Locations	
HSP	15.71	165	11	33	80.0%	1	99.4%
MCC	0.57	100	175	9	91.0%	6	94.0%
OBSP	1.56	66	42	54	18.2%	10	84.8%
OCSP	28.97	931	32	1163	24.9%	955	2.6%
SCOF	88.22	5154	58	4231	17.9%	3703	28.2%
TDOF	39.36	2333	59	1369	41.3%	1356	41.9%
Mean	29.07	1458	63	1143	45.6%	1005	58.5%
±Standard	±29.87	±1833	±53	±1489	±29.5%	±1317	±36.4%
Deviation	129.07	I1033	100	I1409	123.5%	±1317	130.4%

Table 3. Comparison of number of well locations calculated from aeromagnetic surveys compared to state and DrillingInfo (DI) databases.

Assessment of Gathering Natural Gas Pipelines in Colorado/Utah/Ohio/New Mexico

- Objectives
 - Refine methods to improve quantification of methane emissions from natural gas pipelines
 - Conduct field-based campaigns to collect measurements from a variety of gathering pipelines systems
 - Use emissions measurements collected to calculate improved emission factors and compare them to the current GHGI factor
- Data Sources

Field Campaign

Study Approach **VEHICLE-BASED SURVEY**

To the Cloud

Wii Sur **Capturing plume:** Anemometer Real-time from the Cloud Tablet

Gas Analyzer

Figure 5: Sample representation of vehicle used for ground-based methane survey

Ground Speed:	5 mph with hazard lights/ strobe			
Wind Conditions:	< 10 mph			
Survey method:	Two passes per segment			

(>0.5 ppm CH4 above background)

Vehicle- Mounted Equipment	Function	Sensitivity	
Ultraportable Methane/ Acetylene Cavity Ring Down Spectrometer (CRDS)	methane measurements	2 ppb / 0.6 ppb	
Ultrasonic Weather Station	wind, pressure, temperature data	0 m/s to 5 m/s - 0.5 m/s + 10% of reading	
R2 GNSS Receiver	GPS unit		
Power Inverter	DC to AC	-	
Power Center	GPS, weather station power	-	
DC Power Pack for CRDS	CRDS power	-	
Laptop Computer	datalogger	-	

Figure 6: A Hi-Flow Sampler will be used to quantify the leak rate once a leak is identified.

Total mileage surveyed ~230 mi

NATIONAL ENERGY

Quantifying Methane Emissions From Natural Gas Metering & Regulating (M&R) Stations

Credit: NETL Multimedia

M&R Stations

M&R Stations as Categorized in EPA GHGI

Category	Sampl e	Activity	Category	Sampl e	Activit y
M&R (>300psi)	56	4,008	Regulators (40- 100psi)	14	39,780
M&R (100-300psi)	10	14,627	Regulators (<40psi)	1	16,868
M&R (<100psi)	0	7,818	R-Vaults (>300psi)	8	3,602
Regulators (>300psi)	42	4,382	R-Vaults (100- 300psi)	7	11,164
Regulators (100- 300psi)	50	13,256	R-Vaults (40-100psi)	8	8,364

Source: Lamb et. al. (2015), EPA GHGI

Identified 22 M&R Stations in Ohio. No prior information about the sites. Assumption is they are M&R (>300psi).

GMAP Vehicle

- Higher emission rates from the sites visited.
- Rest of the campaign impacted by COVID-19 pandemic.
- Lamb, 2015 study was done in Summer and there was an implication.
- Methane emissions high in Winter?

Comparison	Lamb, 2015 (EPA GHGI)	This Study
Sample Size, n	59	11
Emission Rate (g/min)	4.06	12.47
Standard Deviation (g/min)	14.15	6.36
95% UCL (g/min)	7.67	16.23

Mapping buried steel flowlines using geophysical sensors mounted on drone aircraft

Geophysical Sensors: Field-testing of state-of-the-art sensor technology

Magnetic

Sensor- Total Field Magnetometer Manufacturer – QuSpin Atomic Magnetometer – Rubidium UAS- DJI M600 Operator- DiGioia Gray

Sensor- Total Field Magnetometer Manufacturer – Geometrics (MagArrow) Atomic Magnetometer – Cesium UAS- DJI M600 Operator- Juniper Unmanned

ElectroMagnetic

Sensor- Electromagnetic (EM) Manufacturer – Geophex (GEM2 UAV) Multifrequency EM transmitter/receiver UAS- Custom Heavy Lift Hexarotor Operator-UAV Exploration

Pennsylvania Test Site

Serpentine Flight Plan

- Minimum AGL - Maximum AGL -X-Average AGL

Pennsylvania Test Site – Sensor Height = 8 m

Colorado Test Site

Collaboration with Colorado Oil & Gas Conservation Commission

Results/Preliminary Conclusions

- 2-inch steel pipelines can be mapped using magnetic sensors at 8-m AGL and below.
- 4-inch steel pipelines can be mapped using electromagnetic sensors at 4m AGL and below.
- Magnetic pipeline anomalies are discontinuous; electromagnetic pipeline anomalies are continuous
- Spiral magnetic surveys are more sensitive to pipelines and more time efficient
- Observed Problems:
 - Altitude too low for obstacle clearance
 - Pipeline anomalies are too broad:
 - COGCC requires +/- 1 meter
 - US DOE requires +/- 10 cm
 - Drone surveys less than 4m AGL have poor altitude control

