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Funding, POP, Participants

• 10/2019 - 10/2022

• $1.5M, DOE

• “Data Share” Partners: Natural gas transmission 

(NGT) pipeline industry

– Open to NGT pipeline operators

• 1 partner so far (unnamed)

– Open to ILI companies, ILI research labs/consortia

• 1 ILI partner so far (unnamed)

• 1 consortia member (PRCI)

PROJECT OVERVIEW Overview

Background

Approach/Scope

Progress/Status

Future Plans

Summary 
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Overall Project Objectives
1. Team with NGT pipeline industry and apply ML to historical 

NGT pipeline data sets

– ILI data (ILI tool signal data or flaw sizes listed in ILI reports)

– Pipeline attributes (material, environmental conditions, construction 

history, etc.)

2. Uncover “novel signatures” in data sets to gain new insights 

on current & future pipeline condition

– Non-obvious ILI signal features used to increase flaw detection 

probability, resolution & accuracy of flaw size (MFL or UT) 

– Non-obvious relationships between pipeline corrosion initiation time, 

corrosion rate, and pipeline properties/attributes

3. Use novel signatures to build model

– Diagnostic model for assessing current pipeline condition

– Hybrid physics-based, data-driven prognostic model for predicting future 
pipeline condition

4. Generate algorithms with model, transfer to industry

PROJECT OVERVIEW Overview

Background

Approach/Scope

Progress/Status

Future Plans

Summary 
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Envisioned Use

Research (Us)
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Amaya-Gómez R, M Sánchez-Silva, E Bastidas-Arteaga, F Schoefs, and F 

Munoz. 2019. “Reliability assessments of corroded pipelines based on internal 

pressure – A review.” Engineering Failure Analysis.

TECHNOLOGY BACKGROUND Overview

Background

Approach/Scope

Progress/Status

Future Plans

Summary 



Underpinning Science of a Diagnostic Model: 

Data Science/Machine Learning   &    Physics of Wave/Flaw Interaction
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Underpinning Science

Ji F, C Wang, S Sun, and W Wang. 2009. “Application of 3-D FEM 

in the simulation analysis for MFL signals.” Insight 51 (1).

Jagtap AD, K Kawaguchi, and GE Karniadakis. 2020. “Adaptive activation functions accelerate 

convergence in deep and physics-informed neural networks.” Journal of Computational Physics 404.

Hybrid Physics-based/Data-driven Model 

of MFL/UT Signals
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Underpinning Science of a Prognostic Model (for Corrosion):

Data Science/Machine Learning   &   Corrosion Growth Rate Model

Melchers RE 2018. “Progress in developing realistic corrosion 

models.” Structure and Infrastructure Engineering 14(7).

Jagtap AD, K Kawaguchi, and GE Karniadakis. 2020. “Adaptive activation functions accelerate 

convergence in deep and physics-informed neural networks.” Journal of Computational Physics 404.

Hybrid Physics-based/Data-driven Model of 

Corrosion Initiation and Evolution Rate
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Prior Development Efforts
▪ PNNL prognostics focused on nuclear advanced reactor components (Ramuhalli, et al.)

TECHNOLOGY BACKGROUND Overview

Background

Approach/Scope

Progress/Status

Future Plans 

SummaryRisk Models 

and Metrics; 

Predictive Risk 

Estimates

Data/Physics 

Driven 

PrognosticsNew Signatures, 

Inverse Problems & 

Data Fusion
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Advantages/Challenges

TECHNOLOGY BACKGROUND Overview

Background

Approach/Scope

Progress/Status

Future Plans 

Summary

• Technical/economic advantages:
– Data sets needed to train data-driven/ML aspect of model already exist (data 

collection is expensive)

– Will leverage machine learning algorithms developed at PNNL and by others, so not 

starting from scratch

– Hybrid model approach allows data-driven model to be imperfect and physics-

based model to be imperfect

– Hybrid model should result in increased certainty of pipeline condition and 

degradation/corrosion rate

• Benefit to stakeholders: If industry has higher certainty of pipeline reliability and remaining 

useful life, then it drives focused/efficient predictive maintenance 

• Results in more reliable “gas grid” and more efficient use of integrity management 

resources

– Cost is concentrated in the initial development and testing phase; scale-up 

and technology transfer of software over time will cost less

• Technical/economic challenges:
– Need large data sets to train data-driven aspect of model

– Reliant on data access provided by others – takes time to build trust/credibility with 

partners
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I

Model Development

Experimental Design 

TECHNOLOGY BACKGROUND / PROJECT SCOPE Overview

Background

Approach/Scope

Progress/Status

Future Plans 

Summary



Collect NDE signal data 
during inspections of in-

service pipelines

Process and analyze 
NDE signal data to 

derive flaw 
characteristics (type, 

size, location, etc.)

Use flaw characteristics 
to assess pipeline 

condition and reliability 
(failure pressure) 

Use pipeline condition 
with failure 

models/statistical 
models to predict 

remaining service life

Use results to decide 
where to focus integrity 
management resources

Integrate with other 
data or models (e.g., 

geospatial) to support 
plans for infrastructure 

upgrades

Inspection Diagnostics Prognostics
Decision-
makingSignal Analysis
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Work Plan & Schedule
Phase I: Model Development Phase

FY 2019 - FY 2020

Expected Key Outcomes: 

1) Framework for machine learning

2) Strategic partnership(s) with NGT pipeline 

operator(s)

3) Sharing of NGT pipeline data sets for a 

representative sampling of NGT pipelines 

located across the U.S. needed to train robust 

machine learning algorithms

FY 2020 - FY 2021

Expected Key Outcomes: 

1) New data-driven algorithms 

produced by applying machine 

learning to past data to reveal 

corrosion evolution rates, initiation 

times, failure pressure/age and their 

correlation with key properties of 

pipelines (essential variables) 

2) Down-selected physics-based models 

of corrosion to hybridize with the 

new data-driven model of corrosion

FY 2021

Expected Key Outcomes:

1) Verified and validated 

data-driven model of 

corrosion evolution

2) Ancillary outcome: 

specific data that 

could be collected in 

the future, using 

existing or new 

process monitoring or 

ILI sensors

FY 2022

Expected Key Outcome:

Phase I Milestone: Produce Alpha 

Hybrid Model for Corrosion v0.1 

(research-grade prototype 

software intended for first round 

of alpha testing)

Primary Tasks:

• Build framework for hybrid data-driven, physics-

based model, starting with corrosion

• Develop partnerships with NGT pipeline 

operator(s) who have interest in applying machine 

learning (ML) to historical pipeline data to 

improve certainty of time-to-failure (TTF) 

projections (prognostics) for inspected and un-

inspected pipelines

• Get NDA(s) in place with operator partner(s) who 

can share data on pipelines located in the U.S., or 

representative of those in the U.S.

• Transfer data from operator partner(s) to the 

PNNL Data Stewardship Board to “de-identify” the 

data

Primary Tasks:

• Apply ML to pipeline data sets to in-

line inspection report data, etc. to 

produce new data-driven corrosion 

evolution rate models, data-driven 

corrosion initiation time models, and 

data-driven failure pressure/age 

models

• Perform “hindcasting” with pre-

existing corrosion evolution rate 

models to determine which ones yield 

the most accurate results and should 

be considered for “hybridization” with 

the new data-driven corrosion 

evolution rate model

Primary Tasks:

• Verify new data-driven 

models using ~10% of 

training set data

• Validate new data-

driven models using 

another ~10% of 

reserved data sets to 

determine if model 

predictions reflect 

ground-truth answers 

with an acceptable level 

of accuracy, e.g., 90+%

Primary Tasks:

• Hybridize validated data-driven 

corrosion models with down 

selected pre-existing physics-

based corrosion evolution 

models

• Test the hybridized models (via 

hindcasting) to determine 

accuracy of predictions as 

compared with individual data-

driven and physics-based models

• Add statistical models

• Test the statistical models (via 

hindcasting)

• Refine, re-test until alpha ready

# Milestones and Deliverables
Current Due 

Dates
Status

1 Year 1 Summary report N/A Complete

2 Diagnostic Algorithm Evaluation Report 5/31/2021 Not Yet Due

3 Prognostic Algorithm Evaluation Report 9/30/2021 Not Yet Due

4
Pipeline Reliability and Lifecyle Health 

Management System Design Report
9/30/2022 Not Yet Due

TECHNOLOGY BACKGROUND / PROJECT SCOPE Overview

Background

Approach/Scope

Progress/Status

Future Plans 

Summary
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Success Criteria & 
Risk Mitigation

TECHNOLOGY BACKGROUND / PROJECT SCOPE

• Project success criteria:

– Engaged “data-share” partners from NGT pipeline industry (go/no-go)

– Model predictions accurately reflect ground-truth answers (e.g., 90+%)

Project Risks Risk Mitigation

No MFL/UT signal data with

corresponding ground-truth data 

are provided.

-or-

No ILI report data and meta-data 

(associated pipeline attribute data, 

construction info., environmental 

conditions, operating history, etc.) 

are provided.

MFL/UT signal data without ground-truth data is not useful for model training. The model 

framework is flexible enough that it can make use of MFL/UT signal data with ground-

truth data if the data sets are available (for diagnostic model development); however, it 

can forego diagnostic model development and just focus on prognostic model 

development that uses tabulated flaw sizes, such as those found in ILI reports.

If pipeline ILI report data are provided, but no corresponding meta-data, then the ILI 

report data will not be useful for model training. If meta-data are provided, but no ILI 

report data, then the data can be used to train a prognostic model, but it would be based 

on time in service before failure, instead of based on pipeline condition.

MFL/UT signal and ground-truth 

data sets are provided by 

partner(s), but only for a modest 

quantity of pipelines.

Modest signal/ground truth data sets are acceptable because inspections are performed 

on long runs of pipeline and each pipeline typically contains thousands of features that 

are examples on which the model can be trained.

ILI report and meta-data are 

provided by partner(s), but only for 

a modest quantity of pipelines 

(e.g., narrow range of materials 

and/or geographical regions).

Modest ILI/meta-data sets are acceptable, but not preferred, because the range of 

pipelines to which the model can be applied in the future will be limited by the diversity of 

the pipeline data used to train the model. A modest quantity of pipeline data sets just 

means the model will need to be applied to a narrower range of pipelines. However, the 

model can be updated as more data sets are provided to expand applicability.

Overview

Background

Approach/Scope

Progress/Status

Future Plans 

Summary



Accomplishments
▪ Used past NGT pipeline incident

data to show DNN applications

▪ Limited to pipeline failures due 

to corrosion, about 1500 

samples (80/10/10 split)

▪ Model predicted incident year 

with ~86% accuracy i.e., model 

correctly predicted the incident 

year ~86% of the time

▪ Presented at PRCI REX2020 in 

March and invited members to 

participate on project

▪ “Data-share” partners added 

to project team

▪ 1 pipeline operator partner

▪ 1 ILI company partner

▪ PRCI hosted webinar where 

PNNL presented project goals

▪ To keep opportunity open 

▪ Attended by ~100 members

▪ Follow-up from 9 companies 

Feature Variables
Target 

Variable

Column Name

# Possible 

States Column Name

IYEAR 49

INCIDENT_IDE

NTIFIED_DATE

TIME

ON_OFF_SHORE 3

ITEM_INVOLVED 3

PIPE_TYPE 6

PIPE_DIAMETER 83

PIPE_MANUFACTURER 61

PIPE_MANUFACTURE_YEAR 56

PROGRESS & CURRENT STATUS Overview

Background

Approach/Scope

Progress/Status

Future Plans

Summary 



Diagnostic component: Predict flaw characteristics from signal data

• Data received (thanks to ILI partner):
– 2-D MFL scans (axial, radial, 

circumferential) from ILI

– Ground truth measurements and scans 
of defect location and surface

– Processed features of 2-D MFL scans 
(measurements of signal peak, peak-to-
peak, footprint, etc.)

• Model input/output structure:
– Data inputs: (raw) MLF data or 

(processed) its geometric features

– Prediction target: infer properties of flaws 
(length/width/depth or depth map)

• Key research questions:
– Is the signal local or global (interference between defect signals)?

– Do candidate flaws need to be located or picked (automated vs human detection of “bounding 
box”)?

– Can a model understand raw data, or does it signal properties or other metrics (rescaling can 
highlight subtle features)?

– Can a model reconstruct the defect surface, or just geometric properties?

Source:

Kandroodi

et. al. (2017) 

IEEE Trans. 

Magn.

Current Status

PROGRESS & CURRENT STATUS
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Overview

Background

Approach/Scope

Progress/Status

Future Plans 

Summary

Measurement

Flaw shape & 

Location



Diagnostic component development: Defect detection

CenterNet: Can use different models as backends depending on the task 

(e.g. object detection, object segmentation, etc.)
https://medium.com/@sunnerli/simple-introduction-about-hourglass-like-model-11ee7c30138

MFL Principle: Magnetic field will leak in areas where 

there is a defect CenterNet: Learns to find the object's center and the length and width of the 

encompassing box.

• “CenterNet” is a centered-point 

object detection approach

• Objective: Use CenterNet to 

detect flaws from MFL data, classify 

based on length, width, depth

• Inputs: 3D matrices of MFL data, 

labeled using the COCO data 

format

• Outputs: Defect location and depth, 

and rough defect length/width

Current Status

PROGRESS & CURRENT STATUS
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Overview

Background

Approach/Scope

Progress/Status

Future Plans 

Summary

https://www.youtube.com/watch?v=b_v957tnCek



Diagnostic component development: MFL to defect reconstruction

• Radial basis functions (RBFs) are used to 
represent complex functions

– E.g. the sum of several RBFs can be used to 
learn detailed 3-D surfaces, and multi-
dimensional signals like MFL

• RBF networks are used as a general function 
approximator

– Have been used to learn maps from MFL to 
defect surfaces

• RBF networks are deep neural networks with 
one hidden layer

– Traditionally, higher accuracy is achieved with 
more RBFs.

– However, “deeper” networks may provide 
higher accuracy.

Sources: (left) http://graphics.stanford.edu/data/3Dscanrep/;

(right four) Ohtake et. al (2004), 

http://www.cs.jhu.edu/~misha/Fall05/Papers/ohtake04.pdf

Reconstruction of defect profiles from MFL signals: (left) 

simulated MFL data, (right) real MFL signal from engineered 

defect. Source: Han et al. (2017) Russ. J. Nde. Test.

Traditional RBF NN: Source: Kandroodi et. al. (2017) IEEE Trans. Magn.
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Current Status

PROGRESS & CURRENT STATUS Overview

Background

Approach/Scope

Progress/Status

Future Plans 

Summary

http://graphics.stanford.edu/data/3Dscanrep/
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Future Development/Tests

FUTURE PLANS Overview

Background

Approach/Scope

Progress/Status

Future Plans 

Summary

• Development:

– Continue development of diagnostic model

– Begin development of prognostic model

• Testing:

– Near-term: Validation testing of “alpha” model

– Long-term: Application testing (test cases)

Current project
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Future Tech Transfer

FUTURE PLANS Overview

Background

Approach/Scope

Progress/Status

Future Plans

Summary 

Implementation by Partners
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Scale-up

FUTURE PLANS Overview

Background

Approach/Scope

Progress/Status

Future Plans

Summary 

Enrich and 

scale-up training 

data set to 

increase scope 

of application
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Summary

SUMMARY Overview

Background

Approach/Scope

Progress/Status

Future Plans

Summary 

• Project is in “Year 2” in terms of progress, Year 3 in terms of time

• Finally building momentum on data receipt and model building

• Key findings:

– ~86% accuracy of predicting year of pipeline failure (based on 1500 examples, 

limited to failure cases only)

– Engaged “data-share” partners to expand training data set to include representative 

sampling of pipelines

– Receiving batches of ILI signal data (MFL) and developing diagnostic aspect of 

model

• Lessons learned

– Took extra year to build data-share partner relationships

– Industry open to partnering on this project; some have attempted ML themselves or 

with others and are open/optimistic about continuing 

• Future plans

– Continue developing prognostic aspect of model

– Begin developing prognostic aspect of model

– Follow up with interested companies from PRCI webinar



Appendix
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Organization Chart
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Gantt Chart
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PM Quarterly Report 

Tech Task 1: Workshop Summary

Tech Task 2: Diagnostic algorithm evaluation report

Tech Task 3: Prognostic algorithm evaluation report

Tech
Task 4: Pipeline reliability and lifecycle health 

management system design report

1 Data Requirements and Accessibility 

2 Diagnostic Algorithm Development 

3 Prognostic Framework Algorithm Development 

4
Pipeline Reliability and Lifecycle Health 

Management System

Deliverables

Tasks

Novel Signatures from Deployed Transmission 

Infrastructure Sensors
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2018 2019 2020 2021 2022

To be completed

Completed


