Novel Signatures from
Deployed Transmission

Infrastructure Sensors
Project Number 72954

Kayte Denslow
Non-destructive Evaluation Team

Pacific Northwest National Laboratory

U.S. Department of Energy

National Energy Technology Laboratory

Oil & Natural Gas
2020 Integrated Review Webinar



Outline

(required contents)

Program Overview
— Funding
— Period of performance
— Participants
— Overall project objectives

Technology Background
— Envisioned use
— Fundamental science basis
— Development prior to project

— Technical/economic advantages and
disadvantages

Technical Approach/Project

Scope
— Experimental design
— Work plan
— Project schedule
— Project success criteria

— Project risks and mitigation strategies

4. Progress and Current Status

— Description of technology

— Significant accomplishments, tied to technology
challenges

— Performance levels achieved so far, compared to
project goals and tied to economic and technical
advantages

5. Plans for future testing/
development/commercialization
— Inthis project
— After this project
— Scale-up potential

6. Summary

— Project summary
— Key findings, lessons learned, and future plans

Appendix
— Organization chart
— Gantt chart



PROJECT OVERVIEW Overvie

Funding, POP, Participants

« 10/2019 - 10/2022
+ $1.5M, DOE

« “Data Share” Partners: Natural gas transmission
(NGT) pipeline industry
— Open to NGT pipeline operators
1 partner so far (unnamed)

— Open to ILI companies, ILI research labs/consortia
« 1 ILI partner so far (unnamed)
« 1 consortia member (PRCI)



PROJ ECT OVERVl EW Overview

Overall Project Objectives

Team with NGT pipeline industry and apply ML to historical
NGT pipeline data sets

— ILI data (ILI tool signal data or flaw sizes listed in ILI reports)

— Pipeline attributes (material, environmental conditions, construction
history, etc.)

Uncover “novel signatures” in data sets to gain new insights
on current & future pipeline condition

— Non-obvious ILI signal features used to increase flaw detection
probability, resolution & accuracy of flaw size (MFL or UT)

— Non-obvious relationships between pipeline corrosion initiation time,
corrosion rate, and pipeline properties/attributes

Use novel signatures to build model
— Diagnostic model for assessing current pipeline condition

— Hybrid physics-based, data-driven prognostic model for predicting future
pipeline condition

Generate algorithms with model, transfer to industry 4



TECHNOLOGY BACKGROUND Overview

Background
Approach/Scope
Progress/Status
Future Plans

Envisioned Use

Inspected
Pipelines

Research (Us)

» PDF for corrosion evolution rate
» PDF for corrosion initiation time
» PDF for baseline failure pressure/age

Pipeline Health Display V1.0 (Commercial grade executable)

Inputs: Essential
Pipeline Variables

PRI p—

.....

Un-Inspected
Pipelines

Outputs: Probability density functions
for corrosion evolution rate corrosion
initiation time; baseline lifecycle or

T failure age/pressure; and condition

- m\m

»- PDF for corrosion evolution rate

» PDF for corrosion initiation time

» PDF for pipeline condition

» PDF for baseline failure pressure/age

Operations (Industry)

Point of
A material failure
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Amaya-Gémez R, M Sanchez-Silva, E Bastidas-Arteaga, F Schoefs, and F
Munoz. 2019. “Reliability assessments of corroded pipelines based on internal
pressure — A review.” Engineering Failure Analysis.



TECHNOLOGY BACKGROUND

Underpinning Science

Overview
Background
Approach/Scope
Progress/Status
Future Plans
Summary

Data-driven machine

learning model
(neural network)

Hybrid Physics-based/Data-driven Model of
Corrosion Initiation and Evolution Rate

Done. «—y

Jagtap AD, K Kawaguchi, and GE Karniadakis. 2020. “Adaptive activation functions accelerate
convergence in deep and physics-informed neural networks.” Journal of Computational Physics 404.
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Failure (TTF) and

Estimate RUL,
Estimates Confidence Bounds

Data/Physics
Driven

Inverse Problems & j
Data Fusion <

rrrrrrrrrrrrrrrr

4

Prognostics:
Predict Damage
State for k>j

A8 Y,




TECHNOLOGY BACKGROUND

Background

Advantages/Challenges

Technical/economic advantages:

Data sets needed to train data-driven/ML aspect of model already exist (data
collection is expensive)

Will leverage machine learning algorithms developed at PNNL and by others, so not
starting from scratch

Hybrid model approach allows data-driven model to be imperfect and physics-
based model to be imperfect

Hybrid model should result in increased certainty of pipeline condition and
degradation/corrosion rate

» Benefit to stakeholders: If industry has higher certainty of pipeline reliability and remaining
useful life, then it drives focused/efficient predictive maintenance

* Results in more reliable “gas grid” and more efficient use of integrity management
resources

Cost is concentrated in the initial development and testing phase; scale-up
and technology transfer of software over time will cost less

Technical/economic challenges:

Need large data sets to train data-driven aspect of model

Reliant on data access provided by others — takes time to build trust/credibility with,
partners



TECHNOLOGY BACKGROUND / PROJECT SCOPE

Pacific
Northwest

NATIONAL LABORATORY

Input Data: Hi storical Pipeline Data

+ 3 primary data types for a representative sampling of
U.S. pipelines provided by operator partner(s)

+ Can restrict to ex service pipelines if desired

Flaw char

from ILI reports for
inspected pipelines

Inspected Pipelines
— —_— —_—

Pipeline p hysical
attributes (e.g.,
and wall
techniques)
construction info.
ar of
ation and
soil properties) for
inspected and
uninspected
pipelines

pipeline failure data

Historical operating
data (including
failure incidents) of
inspected and
uninspected
pipelines

@ Operator data

Incremental [big] data-driven models to
be developed based on operator data

E First research-grade corrosion model

Un-Inspected Pipelines

1. “Clean" data and parse 80/10/10
for training/ testing/validation

2. Train algorithms using machine
learning (ML) or deep learning,
e.g., neural networks (NN),
gaussian progress regression (or
ensemble leaming with multiple

— —_— —_—— —_—
Perform hindcasting using historica

Calculate corrosion initiation times
for past corrosion-induced pipeline
fallures using known pressure at
time of failure, corrosion evolution
rates from the new Hybrid
Data-Driven Physics-Based Model
of Corrosion Evolution Rate, and
codified failure pressure equations

Train algorithms using ML,
e.9., Bayesian classifier
- - - - - -

Experimental Design

Model Development

Data Usage: Training Data & Test Data
= Train new corrosion growth/evolution models and
statistical failure models using machine leaming

» Test a ceuracy of existing models through hindcasting

New
Operator-Data-Driven
Models of Corrosion
Evolution Rates

-+ ML-developed algorithms of
corrosion evolution rates and
the essential pipeline
variables (obvious and
non-obvious) with which they
correlate (novel signatures)

Existing Physics-based

Models of Corrosion

» Existing analytical, empirical or
semi-empirical models of
pipeline corrosion rates

New Hybrid Data-Driven

Initiation Time

correlate (novel signatures)

of Corroded Pipeline Failure
Pressures/Ages

(novel signatures)

Physics-Based Model of Corrosion

ML-developed algorithms of corrosion
Initiation times — based on field measurements
and failure pressure equations — and the
essential pipeline variables with which they

INew Operator-Data-Driven Models

ML-developed model of corroded pipeline
failure pressures, ages and the essential
pipeline variables with which they correlate

Model Hybridization
Buttress data driven corrosion model with
physics based model(s)

1. Test & validate via
hindcasting
2. Down select algorithm

- L

Model fusion

I (hybridization);
exact architecture

I will be determined

1. Evaluate hindcasting via testing and

resuils idati
validation (e.g., NN
2. Down select model or particle filter
based on accuracy

method)
_— _—— _—

- - - - - -

1. Train inference algorithm, e.g., Bayesian
networks

2. Test and validate

1, Test & validate via hindcasting
2. Down select algorithm

Model “Ensembling”

Combine validated hybrid model and statistical
failure models into one framework and use them
to generate several predictions

New Hybrid Data-Driven
Physics-Based Model of
Corrosion Evolution Rate

Mode! of corrosion rate — based on field
inspection data and physics - and the novel
signatures with which they correlate

1. Test & validate;
compare

purely data-drivel
and sefect
physics-based
model(s)

corrosion rate fo

I 1. Train inference algorithm,
e.g., Bayesian networks
' 2. Test and validate

New Inference Model for Pipeline
Health/Condition

Models that infer the corrosion evolution rate
and inifiation time of uninspected pipelines -
based on similarities between essential
pipeline variables and the novel signatures
associaled with the two hybrid models - and

use initiation time and rate to infer condition Add “rules” for

performance with I
n

2. Add “rules” for which

S—

Approach/Scope

Complete Alpha
Hybrid Model v0.1
Research grade version ready for alpha testing

Alpha Hybrid Model for

Corroded Pipelines v0.1

s+ Hybrid data driven/physics
based model that relates
novel signatures to

apply to & given corrosion evolution rate
pipeline based on for pipelines

pipeline essential

variables

>+ Inference model that
relates novel signatures to

I corrosion initiation time
and corrosion evolution

rate for uninspected

I pipelines

which corrosion . o

= ATl | rates and initiation > 0 Dbl i
times to apply to a bas_ed i) e
given pipeline typical failure
based on pipeline pres%ure,’aga ezt
essential variables Pipelines




TECHNOLOGY BACKGROUND / PROJECT SCOPE

Work Plan & Schedule

Approach/Scope

Current Due

Milestones and Deliverables Status
Dates

Year 1 Summary report N/A Complete

Diagnostic Algorithm Evaluation Report 5/31/2021 Not Yet Due

Prognostic Algorithm Evaluation Report 9/30/2021 Not Yet Due

Pipeline Reliability and Lifecyle Health 9/30/2022 Not Yet Due

Management System Design Report




TECHNOLOGY BACKGROUND / PROJECT SCOPE

Success Criteria &

Approach/Scope

Risk Mitigation

* Project success criteria:
— Engaged “data-share” partners from NGT pipeline industry (go/no-go)
— Model predictions accurately reflect ground-truth answers (e.g., 90+%)

Project Risks Risk Mitigation

No MFL/UT signal data with
corresponding ground-truth data
are provided.

_Or_

No ILI report data and meta-data
(associated pipeline attribute data,
construction info., environmental
conditions, operating history, etc.)
are provided.

MFL/UT signal and ground-truth
data sets are provided by
partner(s), but only for a modest
guantity of pipelines.

ILI report and meta-data are
provided by partner(s), but only for
a modest quantity of pipelines
(e.g., narrow range of materials
and/or geographical regions).

MFL/UT signal data without ground-truth data is not useful for model training. The model
framework is flexible enough that it can make use of MFL/UT signal data with ground-
truth data if the data sets are available (for diagnostic model development); however, it
can forego diagnostic model development and just focus on prognostic model
development that uses tabulated flaw sizes, such as those found in ILI reports.

If pipeline ILI report data are provided, but no corresponding meta-data, then the ILI
report data will not be useful for model training. If meta-data are provided, but no ILI
report data, then the data can be used to train a prognostic model, but it would be based
on time in service before failure, instead of based on pipeline condition.

Modest signal/ground truth data sets are acceptable because inspections are performed
on long runs of pipeline and each pipeline typically contains thousands of features that
are examples on which the model can be trained.

Modest ILI/meta-data sets are acceptable, but not preferred, because the range of
pipelines to which the model can be applied in the future will be limited by the diversity of
the pipeline data used to train the model. A modest quantity of pipeline data sets just
means the model will need to be applied to a narrower range of pipelines. However, the
model can be updated as more data sets are provided to expand applicability.



PROGRESS & CURRENT STATUS Overview

Background
Approach/Scope
Progress/Status
Future Plans

Accomplishments

o e neert
Feature Variables Variable data to show DNN applications

# Possible = Limited to pipeline failures due

Column Name States  Column Name to corrosion, about 1500

49 -
3 INCIDENT_IDE samples (SO0 Pl
3 NTIFIED_DATE = Model predicted incident year
6 TIME with ~86% accuracy i.e., model
83 correctly predicted the incident
61 year ~86% of the time
56

= Presented at PRCI REX2020 in

Incident Identified Date-Time

True vs Predicted March and invited members to
2000 | s—— participate on project
1750 1
_ = “Data-share” partners added
= 1500 .
= to project team
E 1250 - . .
= true = 1 pipeline operator partner
2 + predicted = 1 ILI company partner
» 1
(1] .
B 500- = PRCI hosted webinar where

PNNL presented project goals

» To keep opportunity open
0 20 40 60 80 100 120 140 = Attended by ~100 members
index » Follow-up from 9 companies

250




PROGRESS & CURRENT STATUS

Progress/Status

Current Status

Diagnhostic component: Predict flaw characteristics from signal data

« Data received (thanks to ILI partner):

« Model input/output structure:

/\\
2-D MFL scans (axial, radial, \
circumferential) from ILI ~
Ground truth measurements and scans .
of defect location and surface <

Processed features of 2-D MFL scans
(measurements of signal peak, peak-to-
peak, footprint, etc.)

/’ Measurement

Data inputs: (raw) MLF data or
(processed) its geometric features

Prediction target: infer properties of flaws
(length/width/depth or depth map)

100

» Key research questions:

Is the signal local or global (interference between defect signals)?

Do candidate flaws need to be located or picked (automated vs human detection of “bounding
box”)?

Can a model understand raw data, or does it signal properties or other metrics (rescaling can
highlight subtle features)?

Can a model reconstruct the defect surface, or just geometric properties? 13



PROGRESS & CURRENT STATUS

Progress/Status

Current Status

Diagnhostic component development: Defect detection

Rt N T 4

+ Objective: Use CenterNet to )
detect flaws from MFL data, classify ... }M/ 4@( r _ﬁ
based on length, width, depth 4 | P

» Inputs: 3D matrices of MFL data,
labeled using the COCO data ..
format

» Outputs: Defect location and depth,
SULPULS . P CenterNet: Can use different models as backends depending on the task
and rOUgh defect Iength/W|dth (e.g. object detection, object segmentation, etc.)

MFL Principle: Magnetic field will leak in areas where

there is a defect CenterNet: Learns to find the object's center and the length and width of the

encompassing box.

A A b |
4l Gl i W B ihad

oy A b |
4l Gl el W B ihad
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- 14




PROGRESS & CURRENT STATUS

Progress/Status

Current Status

Diagnostic component development: MFL to defect reconstruction

- Radial basis functions (RBFs) are used to A ,
represent complex functions ® |
— E.g. the sum of several RBFs can be used to @ 4 g@
learn detailed 3-D surfaces, and multi- e NN\ p
dimensional signals like MFL « /> . '
. 4 w
« RBF networks are used as a general function ,
approximator * P
— Have been used to learn maps from MFL to ot oy S ——

defect surfaces

*  RBF networks are deep neural networks with
one hidden layer
— Traditionally, higher accuracy is achieved with ¢
more RBFs. ~o1

— However, “deeper” networks may provide
higher accuracy.

Profile Profile

| |
N 'S W

Detect depth, cm

|
0.6 True profile | True profile
o IEPUS-PSO [ 1EPUS-PSO
EPUS-PSO EPUS-PSO

0 20 40 60 80 100 0 20 40 60 80 100
Sampling points Sampling points

15


http://graphics.stanford.edu/data/3Dscanrep/

FUTURE PLANS

Overview
Background
Approach/Scope
Progress/Status
Future Plans

Pipelines v0.1
(research grade
prototype software)

Alpha Software for
ILI Signature
Screening v0.1
(research grade
prototype software)

" Essential
RO Pipeline

the mode! to pipelines that:

P had failed in the past or had been preemptively removed
from service,

P whose “true state” are known and can be compared with
model predictions, and

P whose data were not part of training/testing/ validating the
model during the development stage.

Alpha Testing Data Examples:

o Pipelines that have failed in the past (reportable or non
reportable), the data for which are made available by the
operator partner(s) or are available in publicly available
historical failure databases

 Pipelines that are part of PRCI's sample library at the
Technology D evelopment C enter (TDC) in Houston, TX

® Pipelines that are part of EPRI's sample library in
Charlotte, NC.

Pipelines v0.1
{engineering
prototype software)

Beta Software for ILI
Signature Screening
v0.1 (engineering

prototype software)

Pipeline Health Display V1.0

(Commercial grade executable)

Inputs: Outputs:

Variables

applies mode! to pipelines that:

» had failed in the past or had been preemptively removed
from service,

» whose “true state” are known and can be compared with
model predictions, and

» whose data were not part of training/testing/ validating the
model during the development stage.

Future De Velopm ent/Tests ™"
Stage 1: Alpha Testing age : beta lesting . . L .
Apply hybrid mode! to in service pipelines that have ILI data and o in service Apply hybrid model to in service pipelines having ILI data anq_ in service pipelines that Tesiufng (?omplete )
pipelines that have no ILI data to demonstrate acouracy and versatiity of the model have. no ILI datallo further demonstrate accuracy and versatility of the model and to Model is reliable and ready to advance to commercial grade
S e e R e S S S S R e e e e e ’ qualify it for official technology transfer
Alpha Hybrid Beta Hybrid Model
Model for Corroded " for Corro ded .
Perform Alpha Testing - researcher/operator team applies Perform Beta Testing - researcher/operator team Model Complete PNNL

Technology Deployment & Outreach

Office prepares Technology Transfer Plan

Optional: engage an industry
pariner to commercialize software

Add graphical user interface (GUI) to Beta

Probability density function s for corrosion
evolution rate corrosion initiation time; baseline
lifecycle or failure age/pressure; and condition

Verify and validate GUI software

GUI Software Complete Advance to Technology Transfer

Hybrid Model for Corrosion v0.1 to facilitate
entry/uploading of pipeline essential variables
and flaw characteristics from ILI




FUTURE PLANS

Future Plans

Future Tech Transfer

Pipeline Health Display V1.0
(Commercial grade executable)

Inputs: Outputs: /,/\f\\ j-.’.\iﬁk'f-)
Essential Probability density function s for corrosion AR RRRER
Pipeline evolution rate corrosion initiation time; baseline A
Variables lifecycle or failure age/pressure; and condition (,f \ /\
Execute PNNL
Technology
Transfer Plan

Examples of Technology Transfer Options

The Hybrid Model will be made available to data providers and
partners at no-cost under a royalty free software site license
(for executable code) for internal use only. The Hybrid Model
will also be marketed to software service support
provider(s)/vendor(s) to ensure a long-term commercial offering
and support services. All data providers/partners will receive a
discounted subscription to the commercial code offering from
the vendor(s).

17
Implementation by Partners



FUTURE PLANS

Scale-up

Future Plans

Inspected

Pipelines » PDF for corrosion evolution rate

» PDF for corrosion initiation time
» PDF for baseline failure pressure/age

Pipeline Health Display V1.0 (Commercial grade executable)

Inputs: Essential Outputs: Probability density functions

Pipeline Variables for corrosion evolution rate corrosion
initiation time; baseline lifecycle or
failure age/pressure; and condition

Ab A

» PDF for corrosion evolution rate
» PDF for corrosion initiation time

Pipelines » PDF for baseline failure pressure/age
A Living Model:

Sustained support by periodically issuing updated versions of the PHD
commerdcial grade software following updates to the hybrid model source code,
which entails:
=p enrichment of the training data set as additional pipeline data are made
available;
=» updating the algorithms; verifying and validating the updated algorithms; and
=p updating the executable for the commercial-grade PHD grade software.

18



SUMMARY

S uminary s

Project is in “Year 2" in terms of progress, Year 3 in terms of time
Finally building momentum on data receipt and model building
Key findings:
— ~86% accuracy of predicting year of pipeline failure (based on 1500 examples,
limited to failure cases only)

— Engaged “data-share” partners to expand training data set to include representative
sampling of pipelines

— Receiving batches of ILI signal data (MFL) and developing diagnostic aspect of
model

Lessons learned
— Took extra year to build data-share partner relationships

— Industry open to partnering on this project; some have attempted ML themselves or
with others and are open/optimistic about continuing

Future plans
— Continue developing prognostic aspect of model
— Begin developing prognostic aspect of model

— Follow up with interested companies from PRCI webinar 19
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Organization Chart

Casie

Davidson Angela NS Kayte Naveen Steven Juan Arun Ken
PNNL FE Dalton, V|cl_<erman, Denslow, Karri, Task Rosenthal Brandi- Veeramany, Johnson,
Sector PM PE)Ee! PINDE, Lead , Task Lozano Risk & Technical
Manager Coordinator Sensors (Mech Eng) Lead Math/ML/ Reliability advisor

(Math/ML) Industry

Project Lead

Model Development & Machine
Learning

Pacific
Northwest
NATIONAL LABORATORY

Pipeline

: Industry
Operators ILI Companies Consortia
Data-share h
Data-share Partners Outreac
Partners Partners

'7‘ 1 company ‘?‘ 1 company pRCl‘ PRCI
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Gantt Chart

Novel Signatures from Deployed Transmission FY19 Y20 21 F22
Infrastructure Sensors 2018 2019 00 m m
Project No: 72954 {23 4]S|6[7]8]9|0010[{1213(1|15(%6|17({18(19|20| 20|23 (2%|2%5(2|27({28[29(30|31]32|33(34|35(36|37|38|30([40|4(02[B|M(5|%6|47(8
Oct {Nov{Dec [Jan [Feb | Mar |Apr|May {June|Jul|Aug|Sep|Oct {Nov{Dec [Jan Feb|Mar |Apr|May |June ul|Aug|Sep|Oct [Nov|Dec |Jan {Feb |Mar [Apr|May [June {Jul|Aug|Sep|Oct {Nov|Dec |Jan |Feb |Mar |Apr {May [Junelul  Aug {Sep

Deliverables

PM  |Quarterly Report I l . l I
Tech  (Task 1 Workshop Summary

Tech  (Task 2: Diagnostic algorithm evaluation report

Tech  (Task 3: Prognostic algorithm evaluation report
Task 4: Pipeline reliability and lifecycle health
management system design report

Tech

Tasks

1 |Data Requirements and Accessibility

2 |Diagnostic Algorithm Development

3 |Prognostic Framework Algorithm Development

Pipeline Reliability and Lifecycle Health
Management System

-Completed

To be completed

4




