

Numerical Studies for the Characterization of Recoverable Resources from Methane Hydrate Deposits

FP00008138

George Moridis, Matthew Reagan Lawrence Berkeley National Laboratory

Program Manager: Richard Baker

U.S. Department of Energy National Energy Technology Laboratory

Oil & Natural Gas 2020 Integrated Review Webinar Objective: To develop the knowledge base and quantitative predictive capability to describe the most important processes and phenomena associated with gas production from hydrate deposits

Project Components:

- TOUGH+HYDRATE: simulator for hydrate-bearing reservoirs
- Design and evaluation of DOE and industry production tests
- Behavior of hydrates in the natural environment
- Coordinated laboratory work
- Collaborations and training

This was the 2nd year (\$400K) of a new project, FY19-FY21, part of a 20+-year DOE-funded hydrate program at LBNL

FY20:

Task 6: Project Management and Planning

Task 7: Code Maintenance, Updates, and Support

Tasks 8-12: Design support for a DOE field test on the Alaska North Slope

Task 13: Support of DOE's Field Activities and Collaborations

Task 14: Participation in the Code Comparison Study of Coupled Flow, Thermal and Geomechanical Processes

Task 15: Publications, Tech Transfer and Reporting

FY20:

Task 6: Project Management and Planning

Task 7: Code Maintenance, Updates, and Support

Tasks 8-12: Design support for a DOE field test on the Alaska North Slope

Task 13: Support of DOE's Field Activities and Collaborations

Task 14: Participation in the Code Comparison Study of Coupled Flow, Thermal and Geomechanical Processes

Task 15: Publications, Tech Transfer and Reporting

FY20:

Task 6: Project Management and Planning

Task 7: Code Maintenance, Updates, and Support

Tasks 8-12: Design support for a DOE field test on the Alaska North Slope

Task 13: Support of DOE's Field Activities and Collaborations

Task 14: Participation in the Code Comparison Study of Coupled Flow, Thermal and Geomechanical Processes

Task 15: Publications, Tech Transfer and Reporting

Code Maintenance and Upgrades

TOUGH+HYDRATE Codes

T+H is a fully compositional simulator capable of handling:
(a) Equilibrium or kinetic dissociation,
(b) Depressurization, thermal stimulation, inhibitor effects, and combinations

- 1. Moridis, G.J., Reagan, M.T., Queiruga, A.F., 2019. "Simulation of Gas Production from Multilayered Hydrate-Bearing Media with Fully Coupled Flow, Thermal, Chemical and Geomechanical Processes Using TOUGH+Millstone, Part I: The Hydrate Simulator," *Transport in Porous Media*, **128**, 405-430, doi: 10.1007/s11242-019-01254-6.
- 2. Queiruga, A.F., Moridis, G.J., Reagan, M.T., 2019. "Simulation of Gas Production from Multilayered Hydrate-Bearing Media with Fully Coupled Flow, Thermal, Chemical and Geomechanical Processes Using TOUGH+Millstone, Part II: Geomechanical Formulation and Numerical Coupling" *Transport in Porous Media*, **128**, 221-241, doi: 10.1007/s11242-019-01242-w.
- 3. Reagan, M.T., Queiruga, A.F., Moridis, G.J., 2019. "Simulation of Gas Production from Multilayered Hydrate-Bearing Media with Fully Coupled Flow, Thermal, Chemical and Geomechanical Processes Using TOUGH+Millstone, Part III: Application to Production Simulation," *Transport in Porous Media*, **129**, 179-202, doi: 10.1007/s11242-019-01283-1.

Code Maintenance and Upgrades

TOUGH+HYDRATE Codes

handling:
(a) Equilibrium or kinetic dissociation,
(b) Depressurization, thermal stimulation, inhibitor effects, and combinations

simulator capable of

T+H is a fully compositional

- Used by **40+** research organizations in 18 countries
- Used by 8 international oil and gas companies

LBNL and/or T+H involved in the planning/design of nearly every international field test :

- Mallik (DOE/Japan), PBU-L106 (DOE), "Mt. Elbert" Unit-D (DOE), Ignik Sikumi (DOE/ConocoPhillips), AC818/"Tigershark" (DOE/Chevron)
- Ulleung Basin (DOE/KIGAM), India NGHP-02 (DOE/India)
- Shenhu (China) (T+H code)

LBNL & The International Code Comparison Study 2

International effort comparing T-H-M simulators for gas hydrate production

- 5 test problems ranging from 0D to 1D flow to 3D T-H-M cases
- LBNL lead Problem 4 (radially symmetric flow and geomechanics)
- Co-authors of IGHCCS2 paper

What else could we learn from this study?

- Tested mesh convergence for standard, Darcy-based hydrate simulation methods: are we using "correct" discretization?
- Ongoing study: more complex than expected

- Coupled flow, geomechanics, and hydrate dissociation
- 1D axisymmetric *r*-*z* mesh, 5,000 m x 1 m, ∆*r* = 0.02 m, around a well, *t* = 30 days
- Compare depressurization to an analytical solution (Rudnicki, 1986)

$$P = \frac{Q_S/h}{4\pi k/\eta} E_1(\xi(r,t)) \quad u_r = \frac{(Q_S/h)\alpha f(\xi(r,t))r}{8\pi (k/\eta)(K_d + 4G/3)}$$

LBNL & The International Code Comparison Study 2

International effort comparing T-H-M simulators for gas hydrate production

- 5 test problems ranging from 0D to 1D flow to 3D T-H-M cases
- LBNL lead Problem 4 (radially symmetric flow and geomechanics)
- Co-authors of IGHCCS2 paper

What else could we learn from this study?

- Tested mesh convergence for standard, Darcy-based hydrate simulation methods: are we using "correct" discretization?
- Ongoing study: more complex than expected

- Very close match between TOUGH+HYDRATE/Millstone and the analytical solution
- Other IGHCCS2 codes performed well, too

1D Mesh Convergence Study

t = 30 d

0.8

Test Mesh Convergence in 1D Case

- 50% hydrate (initial)
- Scale discretization (Δr) by factor **S**
- $S = 1.0-10.0 \rightarrow \Delta r = 0.02 \text{ m} 0.2 \text{ m}$
- Good convergence even for coarser meshes
- Some lensing appears at S = 2.0 (Δr = 0.04 m)

- Lower effective permeability
- $S = 1.5 20 \rightarrow \Delta r = 0.03 \text{ m} 0.4 \text{ m}$
- Lensing appears at S < 10.0
- u_r varies with lensing (S_H vs. P)
- Lensing sensitive to initial heterogeneity and k_{eff}

r (m)

---- results half 1.0

results_half_3.0
 results half 5.0

2D Mesh Convergence Study

Enera

- Scale S from 2.0 to 50.0 ($\Delta x / \Delta y \rightarrow 4$ cm to 1 m)
- Geomechanics disabled
- Does the simulation still match axisymmetric behavior?
- **S = 2.0, 50% hydrate,** 1D *r-z* vs. 2D *x-y*
- Mild lensing seen in both (4-7 m)
- Water and gas production similar
- Clue: small variation w/o geomechanics

2D Discretization

70 % Hydrate, 30 days

2D Discretization

- Lensing clearly initiated by mesh features (would 2D r- θ meshes look different?)
- Radially symmetric features appear by 30 days, larger *r*

Enera

- "Moving lenses" and "wormholing" that appear in earlier studies develop
- Discretization geometry around the well critical in seeding heterogeneity
- Mild lensing doesn't affect prediction of net production rates

- Investigation ongoing (part of FY21/BP3 Tasks 18 and 19)
- Treatment of heterogeneity and lensing must be understood
 - Effect of geomechanics?
 - Focus: kinetic vs. equilibrium when mesh scale varies greatly within a simulation
- Effect on predicting overall production in 2.5D and 3D systems?
 - More and more detail in geological models
 - System evolution vs. **system productivity**?
 - Numerics vs. physics?
- Core-scale studies and laboratory verification
- Close attention to k_{rel} and k_{eff} (real data)

- Assess the feasibility of production via numerical simulation
- Determine viable production strategies

Need Geological Model

- System stratigraphy and geometry
- Reservoir boundaries, faults and aquifers
- Geologic model and data provided by project management and collaborators

Unit B: Very desirable properties (k_{int} , ϕ , n)

- Top boundary of simulated domain: top of Unit D above
- Bottom boundary of simulated domain: bottom of available dataset
- Radial/lateral boundary: at r = 800 m
- Flows across boundaries continuously monitored

Comments on Flow System of Unit B

- Significant variability of *k*,
 S_H, S_{irA}
- Remarkable consistency of k_{int}-S_{irA} relationship in the hydrate units
- *k*_{rel}: n_{min} from core studies
 vs. n_{max} from NMR studies
- We maintain maximum fidelity to data: properties and conditions layer by layer in the HBZ
- BOUNDARIES: Duration
 of test is 12-18 months

• Cylindrical system, vertical well

- Within Unit B: $\Delta z = 0.1 \text{ m}$
- Within Units C and D: $\Delta z = 0.25$ m
- Within the rest of domain: ∆z variable (log, 2-sided)
- Radial: Δr from 0.1 to 0.25 m for r < 100 m, log distribution to r = 800m
- Dimension 641x343 (r, z) = 220K elements, 880K eqs
- Every vertical subdivision/layer is considered a separate rock type with unique properties
- Properties derived from the team database
- All boundaries: permeable/flowing, monitored

Initial Conditions

- *P/T* distribution (from Myshakin, personal communication)
- Initial saturations and spatial distribution (from database)
- Salinity of water: 0.5% (from database)
- Account for salinity in simulations (useful indicator)

- Assess the feasibility of production via numerical simulation
- Determine viable production strategies
- Reference case:
 - Perforated interval: **10 m at top of formation**
 - BHP management: 2 MPa below P₀, 2 MPa decline every 30 days, until P_{final} = 2.8 MPa
 - Anisotropy: $k_r/k_z = 10$
 - k_{rel} : Obtained from n_{\min} (OPM)
- Exploratory cases:
 - Assess k_{rel} : low k_{eff} , n_{max}
 - Vary length of perforated interval 5 m, 15 m, etc.
 - "Low well": 10 m interval 3 m below top of formation

Alaska North Slope: Reference Case

- Generation of gas by dissociation: weak
- Production rate: flat to declining after 60 days! (Especially gas rate)
- Water production: increasing, water production ~= water infiltration
- Monitoring wells: show pressure recovery/weak depressurization

Alaska North Slope: Reference Case

Unit B: Hydrate-bearing zone, r = 0 - 40 m

- Dissociation focuses at top of HBZ
- Limited formation of gas→limited gas production

Attempted improvement:

Enera

- Move production interval 3 m down into hydrate zone ("low well")
- Maintain stepped depressurization, use most-likely properties (k_{rel})

- Increased hydrate dissociation/gas generation (~3X)
- Increased gas production at well (~2.5X)
- Production plateau after 60 days, but at a higher level
- Water production still high, but lower than reference case

Alaska North Slope: Improved

- Stronger depressurization, more extensive
- Dissociation focused at core of HBZ
- Low-k_{eff} hydrate zones "encase" depressurized zone
- Increased formation of gas → increased gas production

- Significant H₂O production and inefficient depressurization because of significant/persistent H₂O inflows
- Placement of the top of the well 3 m below the top of the target results in consistently optimal performance in all reservoir property cases
 - Higher gas production due to more effective depressurization
- The most-likely permeability/relative permeability scenario has the best performance
- Effect of k, n, k_{rel}: Significant in terms of gas and H₂O production, not so in terms
 of water-to-gas ratio (defines the envelope of possible production estimates)
- Production interval length, anisotropy have a minor/negligible effect
- Under this geological model, water production is a pervasive issue
- Simulations to be updated/expanded as data evolves

Tech Transfer and Reporting

4 publications

Journal Articles:

- 1. White, M.D., Kneafsey, T.J., Seol, Y., Waite, W.F., Uchida, S., Lin, J.-S., Myshakin, E.M., Gai, X., Gupta, S., Reagan, M.T., Queiruga, A.F., Kimoto, S., IGHCCS2 Participants, "An International Code Comparison Study on Coupled Thermal, Hydrologic and Geomechanical Processes of Natural Gas Hydrate-Bearing Sediments," *J.Mar.Pet.Geo.*, **120**, 104566.
- 2. Moridis, G.J., Reagan, M.T., Queiruga, A.F., Collett, T.S., Boswell, R., Evaluation of the Performance of the Oceanic Hydrate Accumulation at the NGHP-02-9 Site of the Krishna-Godavari Basin During a Production Test and Under Full Production, *J.Mar.Pet.Geo.*, **108**, 680-696.

Conference Papers:

- 1. Moridis, G.J., Reagan, M.T., Queiruga, A.F., "Preliminary Predictions and Analysis of System Behavior During a Planned Long-Term Production Test from an Alaskan Permafrost-Associated Hydrate Deposit," *Proc.* 10th International Conference on Gas Hydrates, Singapore, 21-26 June 2020. (Conference Postponed)
- 2. Reagan, M.T., Queiruga, A.F., Moridis, G.M., "Numerical Validation and Convergence Testing of Coupled Flow-Thermal-Mechanical Hydrate Reservoir Models and the Effect of Meshing on System Evolution," *Proc.* 10th International Conference on Gas Hydrates, Singapore, 21-26 June 2020. (Conference Postponed)

6 presentations:

- 1. Reagan, M.T., "Preliminary Analysis of System Behavior During a Planned Long-Term Production Test at a Permafrost-Associated Hydrate Deposit in Alaska," (poster) 2020 Gordon Research Conference on Natural Gas Hydrate System, Galveston, TX, 23-28 Feb 2020.
- 2. Reagan, M.T., "Validation and Testing of Coupled Flow-Thermal-Mechanical Hydrate Reservoir Models," H44B-07, AGU Fall Meeting 2019, San Francisco, CA, 9-13 Dec 2019.
- 3. Moridis, G.J., "Preliminary Analysis of Expected System Behavior During the Planned test of Gas Production From Hydrate Deposits in Alaska," JOGMEC, Makuhari, Chiba, Japan, Nov 2019.
- 4. Reagan, M.T., "Numerical Studies for the Characterization of Recoverable Resources from Methane Hydrate Deposits," 2019 Carbon Capture, Utilization, Storage, and Oil and Gas Technologies Integrated Review Meeting, Pittsburgh, PA, 26-30 Aug 2019.

Postponed:

- 1. Moridis, G.J., "Preliminary Predictions and Analysis of System Behavior During a Planned Long-Term Production Test from an Alaskan Permafrost-Associated Hydrate Deposit," 10th International Conference on Gas Hydrates, Singapore, 21-26 June 2020.
- 2. Reagan, M.T., "Numerical Validation and Convergence Testing of Coupled Flow-Thermal-Mechanical Hydrate Reservoir Models and the Effect of Meshing on System Evolution," 10th International Conference on Gas Hydrates, Singapore, 21-26 June 2020.

Task 16: Project Management and Planning (\$5K)

Task 17: Continuation of the Baseline Study for a DOE field test on the Alaska North Slope (\$310K)

Task 18: Code Maintenance, Updates, and Support (\$60K)

Task 19: Support of DOE's Field Activities and Collaborations (\$5K)

IGHCCS2 Completion and Publication

Task 20: Tech Transfer and Reporting (\$10K) Task 21: Publications and Travel (\$10K)

TOUGH+HYDRATE and **pTOUGH+HYDRATE** are used:

- by **40+** research organizations in 18 countries
- by 8 international oil and gas companies

LBNL and/or T+H have been involved in the planning and design of *nearly* every international field test or proposed field test:

- Mallik (DOE/Japan)
- PBU-L106 (DOE)
- "Mt. Elbert" Unit-D (DOE)
- Ignik Sikumi (DOE/ConocoPhillips)
- AC818/"Tigershark" (DOE/Chevron)
- Ulleung Basin (DOE/KIGAM)
- India NGHP-02 (DOE/India)
- Shenhu (China) (T+H code)

Appendix

Organization Chart

Gantt Chart

Milestone Title	Milestone Description	Planned Completion Date	Actual Completion Date	Status / Results
PMP	Maintenance and update of the Project Management Plan	November 30, 2019	Draft 11/13/2019 Revised 3/10/20	Submitted
Deliverable	Updated versions serial and parallel versions of the T+H/Millstone code	July 31, 2020	Ongoing	Ongoing
Deliverables	Reports describing in detail the evolution of the system behavior for the reference case and all sensitivity studies.	April 30, 2020 through September 30, 2020	Ongoing	Confidential reports submitted. Conference paper submitted. Two journal articles in preparation pending authorization
Deliverable	Updates reports and publications related to DOE international collaborations	September 30, 2020	November 21, 2019	Paper on India studies appeared in print (JMPG)
Deliverable	Completion of participation in the code comparison study; contributions to reports and publications	September 30, 2020	June 30, 2020	Paper accepted for publication (JMPG). Conference paper submitted (postponed).
Deliverable	Publications, Tech Transfer, Travel, and Reporting	Quarterly	Quarterly	Q1 and Q2 reports submitted