

The University of Texas at Austin Jackson School of Geosciences Institute for Geophysics

Deepwater Methane Hydrate Characterization and Scientific Assessment

Lamont-Doherty Earth Observatory

Oregon State University

The Ohio State University

University of New Hampshire

University of Washington

United States Geological Survey

Peter Flemings & the GOM2 Team The University of Texas at Austin

U.S. Department of Energy National Energy Technology Laboratory Methane Hydrates Project Review Meeting October 27, 2020

Presentation Outline

- 1. Introduction
- 2. UT-GOM2-1 Marine Test
- 3. Pressure Coring Core Handling Technology
- 4. UT-GOM2-2 Science Expedition

Deepwater Methane Hydrate Characterization and Scientific Assessment (DE-FE0023919)

GOM2 Objectives

- To locate, drill, and sample methane hydrate deposits through multiple expeditions
- To store, manipulate, and analyze pressurized hydrates samples
- To maximize science possible through sample distribution and collaboration

• Obtain and Equip			 Test of decoring Test of Prand hance Test of science Tests of a 	 Test of deep-water pressure coring Test of Pressure core transport and handling Test of scientific procedures Tests of analysis capabilities Modification 			fic Expedition	 Characterization of GOM hydrate-bearing sands Comparison within a dipping sand Downhole Dissolved methane 			
 Modific Testing equipm 	ation and of Coring ent		 GC 955 cl Sample d analysis Workshop 	naracterization istribution and os and publica	equ equ • Imp tions pres	ing of coring ipment proved core servation		 and gas comp Measurement Geochemical 	osition t of in-situ P-T profile		
2015	2016	2017	2018	2019	2020	2021	2022	2023	2024		
Phase 1 Phase 2 0/2014-09/2015 10/2015-01/20		re 2 P 01/2018 01/20		3 9/2019	Phase 4 10/2019-09/2020	Phase 5 10/2020-09/20	022	Phase 6 10/2022-09/20	24		
		Current Status									

Deepwater Methane Hydrate Characterization and Scientific Assessment

Accomplishments

- Successful Field Execution: GOM2-1
- Linked 7 universities, DOE, BOEM, USGS
- Viable, and improving, pressure coring technology
- Fundamental contributions in characterization, laboratory analysis, and modeling
- Dedicated volume summarizing our findings at GC 955
- International research collaboration on analyses of pressure core samples

2. UT-GOM2-1, 2017: 'Marine Test'

Meazell et al., 2020, AAPG Bulletin 104, 9

Flemings et al., 2020, AAPG Bulletin 104, 9

UT-GOM2-1 Technical Achievements and Scope

Successes

- 12 successful PCTB deployments
- 25.6 m of recovered pressure core
- ~21 m preserved and transported to UT Austin

- Characterized the GC 955 hydrate reservoir
- Depositional model (Meazell 2020 et al. ; Santra et al., 2020)

- Characterized Hydrate
 Concentration
 - 90% of sandy silt pore space is filled with hydrate
 - Water of seawater salinity
- Gas interpreted to be biogenic (microbial) in origin with possible trace thermogenic

relative to other hydrate reservoirs.

2100 2200 2300

2400

드 ²⁵⁰⁰ 도 ₂₆₀₀

4 2700 2800

> 2900 3000

3100-3200-

0 5 10

Genesis of Hydrate Reservoir

- Methane generated microbially by burial of organic rich mud.
- Methane as free gas is transported into structural closures where sandy silt reservoir is present
- Forms concentrated methane hydrate

3. Pressure Coring & Core Handling Technology

- PCTB used in a variety of international programs
- During UT-GOM2-1
 - 7 runs failed
 - 9 runs sealed late
- Fundamental goal:

Improve performance of this tool.

Deepwater Methane Hydrate Characterization and Scientific Assessment

Incremental Improvements to Pressure Coring Technology

- Improved ability to core at higher flow rates (allows better tool performance).
- Improved sealing at top of tool.
- Tested tool at Land Test Site (Spring 2020) and demonstrated ball valve does not seal consistently.
- Developed ability to document failure mechanism in Geotek test facility.
- Now developing solutions to poor sealing.

PCTB Land Test II (March 2020)

<u>7 PCTB tests were performed at Schlumberger CTTF</u>:

- Core recovery in indurated rocks vastly improved
 - > Core recovery and quality were excellent, generally 80% or higher

Core CTTF-02FB contained 8.9 ft of limestone and shale after recovery

PCTB Land Test II (March 2020)

<u>7 PCTB tests were performed at Schlumberger CTTF</u>:

• Sealing still problematic

- > In 6 out of 7 coring tests, the ball valve only partially closed and no increase in pressure was recorded.
- We interpreted that drilling fluid and entrained cuttings are wedging between the outer housing and the seal carrier jamming the seal carrier which drives the ball.

CTTF-O3CS: Ballvalve visibly jammed open upon recovery of tool

CTTF-O1FB: Ball-valve closed upon recovery of tool

Deepwater Methane Hydrate Characterization and Scientific Assessment

Developed Testing Facility with GeoTek at Salt Lake

PCTB Mk 4

*Successfully reproduced failure mechanism using a range of grain sizes of sediment.

- Now implementing incremental technology improvements to overcome failure mechanism.
- We have gone from 100% failure to roughly 75% success in the bench test.
- Goal is to further improve performance and then return to field test.

Developing Better Core Storage

- Hydrate-bearing pressure cores must be preserved for years for experimental programs.
- Significant core degradation is occurring in storage
- Degradation roughly equal to the amount of methane that can be dissolved into storage fluid
- Developing mechanisms to keep bulk of storage fluid away from the cores
- Determining if and how we can replace or dope storage fluid to prevent hydrate loss.

Deepwater Methane Hydrate Characterization and Scientific Assessment

4. UT-GOM2-2 Science Expedition SCIENCE OBJECTIVES

6 Specific objectives all contribute to reservoir and basin systems understanding of WR313

- 1. Characterize the primary and secondary hydrate reservoirs and their bounding units (Orange Sand, and Upper Blue Sand, respectively).
- 2. Contrast hydrate reservoir properties at different structural levels within a dipping sand (Upper Blue Sand)
- 3. Characterize dissolved methane concentration and gas molecular composition with depth
- 4. Measure in-situ temperature and pressure profile
- 5. High-resolution geochemical and sedimentary profiles
- 6. Reservoir characterization of other targets of interest

Steps:

- Obtain pressure core
- Determine hydrate concentration, gas composition, age, sediment texture, pore water chemistry
- Determine permeability, compression, capillary behavior, strength
- Elucidate reservoir production behavior to inform reservoir simulation

Deepwater Methane Hydrate Characterization and Scientific Assessment

UT-GOM2-2 Science Objectives Basin System

Steps:

- Collect sediment (some at in situ conditions), gas, and pore water samples, pressure and temperature with depth
- Characterize dissolved methane/hydrate concentration, gas molecular composition (microbial source), pore water geochemistry and sedimentology, variation in organic carbon with depth, age of sediments.
- Interpret:
 - how the microbial factory works (shallow vs deep methane generation)
 - How are the products transported to the deposit
- Elucidate basin origin and evolution

UT-GOM2-2 Location: Walker Ridge 313

UT-GOM2-2 Drilling Program

- 53 Pressure coring runs (up to 60)
- 13 Conventional cores
- 100% Pressure coring in the 1st Hole to meet Objective #1: Characterize the Orange sand
- In situ temperature and pressure measurements
- Spot coring pairs ensure we obtain 1 clean core at each depth

UT-GOM2-2: Schedule

- Target Spring 2022
- ~78 day total program
 - 1 week period for staging at port of embarkation
 - 38.5 days at sea
 - 3.7 days mobilization
 - 31.8 days coring program
 - 3 days demobilization
 - 30 days shore-based analysis program

Comparing GOM2-1 and GOM2-2

	UT-GOM2-1	UT-GOM2-2	
Purpose	Technical Test	Research Expedition	
Schedule	22 days off-shore 14 days dockside	39 days off-shore 30 days dockside	x2
Downhole operations	21 PCs	53 PCs 13 APC/XCBs In situ probe	x 3
Objectives	Test capability of UT, PCTB, and pressure core transport	6 Major Scientific Objectives	x 6
Outcomes	Characterization of GC 955 Hydrate-bearing sand	Reservoir and Basin - Systems understanding of WR 313	

Detailed planning is critical to success

UT-GOM2-2 Status: Planning

• All the planning pieces..

Summary: GOM2 Project Evolution

- 1. UT-GOM2-1 Marine Test (2015-present)
 - Do science, develop and test approach, define shortcomings
- 2. Technology Development (2017-2021)
 - Incremental advances to achieve better science.
- 3. UT-GOM2-2 Science Expedition (2019-2024)
 - A prepared, focused, integrated effort to illuminate hydrate system.