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Key points

1. The in situ effective permeabilities are 0.1 to 2.4
mD for hydrate-bearing pressure cores with over
80% hydrate saturation.

2. The intrinsic permeabilities are 12 to 41 mD.

3. The average K| stress ratio of hydrate-bearing sandy
silt samples is about 0.44.
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Motivation: characterize the effective permeability (k)

Before gas production
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* What is the porosity (n)? What is the hydrate saturation (S;)?
« What is the water permeability (k.4) in presence of hydrate?
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Motivation: characterize the intrinsic permeability (k,)

During gas production
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What is the water permeability (k,) without presence of hydrate?
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Motivation: characterize horizontal stress (o,) in the reservoir
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» What is possible horizontal stress in the hydrate reservoir?




Three samples selected for analysis to
represent the reservoir

(a) Core 4FB8 (intact core)
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Core 4FBS8

n=~0.38
S, = 83%

(b) Core 7FB3 (intact core)
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(c) Core 13FB1 (intact core)
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(Fang et al., AAPG Bulletin, in preparation)



@ TEXAS Geosciences
Equipment for cutting, transfer and measurement

(a) Pressure Core Chamber and Mini-PCATS (b) Permeameter

./.

Cold Storage Room

(Location: UT Pressure Core Center, JGB Basement)
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How are stress and permeability measured?

Uniaxial Compression

Vertical
Effective Stress

Downstream
Flow out, gout

Constant Pressure, P1 \I

Permeability: k =—

q-u-L
A'(Pl_Pz)

Horizontal q. flow rate
Effective Stress u: fluid viscosity
L : length of specimen
A cross-section area

Upstream J

Constant Flow Rate, gin
Monitor Pressure, P2
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Effective Stress

Vertical
Effective Stress
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Effective permeability of pressure core samples
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Same grain size, higher hydrate saturation results in lower

effective permeability
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Same hydrate saturation, larger grain size results

in higher effective permeability
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(Fang et al., AAPG Bulletin, in preparation)
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Effective permeability is in the range of 0.1 to 2.4 mD at in
situ stress for core samples over 80% hydrate saturation
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Intrinsic permeability is about 20-fold larger than its

effective permeability at in-situ effective stress
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Implication: GC 955 hydrate reservoir has moderate quality

in comparison with other hydrate reservoirs.
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Results: compression behavior
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In situ porosity is 0.38 to 0.40
* About 1 to 2 unit porosity drop after hydrate dissociation

* Similar characteristic compression curve for all samples

(Fang et al., AAPG Bulletin, in preparation)
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Results: K, stress ratio of hydrate bearing sandy silts is
between 0.4 and 0.5.
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In hydrate formation, the horizontal effective stress is lower than
that of non-hydrate formation.
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Key takeaways

1. The intrinsic permeabilities (12 to 41 mD) are identified by the
reconstitution analysis, suggesting a moderate reservoir
quality.

2. The in situ effective permeabilities (0.1 to 2.4 mD) of hydrate-
bearing siltstones in GC 955 gas hydrate reservoir, which is
sufficiently low for hydrate formation to be a hydraulic barrier.

3. Hydrate-saturated samples have a stress ratio less than 0.5,
resulting in a lower horizontal effective stress than the non-
hydrate formation.
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Thank you for your attention!

Any questions ?



