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« Controlled source electromagnetic

(CSEM) ImOglﬂg — SUESI - EM transmitter
1. Use time varying and DC supplied EM power
2. Use array of electric and magnetic field vector
Sensors
3. Invert data to determine subsurface impedances
4, Interpret data to locate features of interest (e.g.
hydrocarbon)

« CSEM can distinguish between
electrically conductive fluids (e.q.
brine) and resistive fluids (e.g. oil)

« Works well in salt and basalt settings

* MT + CSEM with same equipment

 CSEM better for resistive, MT for
conductive 20 40 60 80 100 120
Distance [km)]
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Market and Benefit

Applications

« Exploration mapping tool
» De-risking tool
CSEM/MT different data then seismic
* Increasing market impact; importance
of seal + charge in exploration
Can be used in conjunction with seismic
survey
CSEM imaging is limited by the signal to
noise (S/N) ratio.
« Better S/N ratfio = Improved feature
detection
Improved CSEM S/N ratio needed for deep
exploration
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* Project Goal: Develop a technological leap
in CSEM imaging resolution (>10x
improvement)
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* Project Objectives

* Review, analyze and assess current CSEM
S/N and performance
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Resistivity with a Resistivity with a
dipole source of 2.5 *10°6 Am dipole source of 3.5 *10"5 Am
« Scope and design new MHD based power

supply approach for CSEM

« Quantify improved S/N performance _
benefits to CSEM and geohazard 1D wod

p.ohmm

« Background
« Higher power CSEM shows benefits

Wi Lo s IR ey
* MHD generg’rors used before for on-shore e 10 MW, 7s pulse solid propellent MHD system built on truck
CSEM imaging * Electric dipole moment of 1.2 * 10~8 A-m achieved
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- CSEM signal to noise ratio analysis

Analysis

Marine CSEM has electronic noises (electrodes and
amplifier), environmental noises (motion of
seawater/instrument sensors), and uncertainties of
transmitter/receiver location.

Except for positional uncertainties, the noise sources
are decreased by “stacking” recorded time series
and/or by increasing a dipole moment.

Stacking is not effective as higher dipole source as it
decreases noise by 1/4/n when the number of data
is stacked n times.

If a dipole moment of the order of 10° kKAm were
generated, the noise floor would be 7.7 x 1017
V/Am?2. To achieve the same S/N ratio by the state-
of-the-art tfransmitter, a survey ship need to go
through survey lines more than 700 times to
decrease by stacking
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Dipole moment

[kAm]
EMGS dipole 3,600
Proposed 10°
MHD based
dipole

/

~27x Improvement
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« 1OMW, Power Output
« OCMHD (e.g. Russian Sakhalin - Diesel powered air combustion w/regenerative

Generator) approach has shown low heating

. : : « MHD Generator is on board ship, replaces diesel
efficiency and longevity at target size generator
(10MWe) « Rectify for ~100,000 Amps and ~100 Volt pulse in

underwater EM transmitter
« ~2-minute duty cycle with 10s pulse

« CCMHD more efficient at smaller « Eliminates need for “pulse stacking” while ship is

scale, and no rocket exhaust moving 4><1—

containing alkali elements

Exhaust 75 X
11 2 13 th |
« Conceptual design for an CCMHD Air_. ANNNAL - Packed Pebble Bed
. Heat Exchanger Combustor | Heat Exchanger
MHD power source and powering : ;
scheme pursued Diesel —{glm, A— R
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MHD performance analysis N=|rarow
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The set-up
CCMHD Power * Energy storage in packed pebble bed Conservation Equations
when not generating electrical power q
generator * Integrated Heat Exchangers with Mass o A =0
« Uses a noble gas Compressor Species pu%(szkwk
« Uses a RF pre-ionizer . Comp_ressor gets loop ruanmg prior to Mormentum pud_u+d_P= S
electrical power generation dXdu dth
Energy pu(u &+&j =Py —Quan
Lorenz Few =J,B,
Nozzle 2 > RF lonizer 3 > MHD 4 > Diffuser EM power PEM = yEy * JXEX
Channel e- temp set Channel Channel outlet
. et oo, pressure Generalized Ohm’s Law
O
11T set Quter velocity set | § J E
se y | x 1+,3H[ :BH( z)]
ebble Regenerative Regenerative ﬁ E + E —uB
Bl:deb(leat < 8 Engaaﬁ or < 7 Compressor |« 6 Exi‘fﬁ or g 1+ ﬂH [ ) ]
Exchanger New T given #1 g p set T set 42 &
il Electrode configuration
(Faraday Shown)
. T =—f,uB,(1-K)
Block flow diagram (MHD power loop shown) for newly developed closed E, = KLUBZ J _ _ouB, (1-K)
. .. . y z

cycle MHD code to predict and optimize power generation
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MHD performance analysis

Resulis

« Computationally optimized the
performance of the proposed system

« ~2.8 gallons diesel per needed per 1I0MW,
10s pulse (@ full power)

« Power cycle efficiency can be ~30%

« Approx. uses same energy input (fuel) as
current CSEM systems, but ~27x
improvement in CSEM from higher total
power over 10s and no stacking.

* |dentified Tech Challenges
« RFionizer efficiency
« Possible lon-slip in generator
« Thermal management in cycle
« Pebble bed losses
« Antenna design
« Power conditioning
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Fixed Parameters | Value
T_nozzle 2200K
u 50 m/s
B_z_chan 6T
Minimization Parameters | Value
p_nozzle 0.9 MPa
K_L_chan 0.5
Maximization Parameters | Value
E_rf 10000 V/m
E_chan 8500 V/m
M_chan 0.6 Mach
B_z_rf 0.7 T
mdot 10 kg/s
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« Evaluated CSEM performance with simulated V’E = ﬂaz_f tgﬁefﬁﬁi’r;‘;‘ji_'n'ityaﬂgmain
sub-surface
« Reconstructed 2D images and explored impacts
of reservoir detection at various depths y

« Ey-tfransmitter and Ey-receiver
(inline component).

Air 103 ohm-m

Z 0
 Tx-Rx offsets are from 0.05km to 20km. Sea 0.3 ohm-m
Tx, z=0.975 km
«  Changed depth of reservoir from 2-5km. é 1
%- Sediments 1 ohm-m
« 2% noise relative to the response amplitude and generated (]
separately for real and imaginary component. 2
5 1 Reservoir 100 ohm-m
« A minimum absolute noise level was set to 10°1°V/Am? for the Sediments 1 ohm-m
traditional source and 10"/ for the MHD source.
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Simulated CSEM imaging results N=|srona:
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2 km depth Used frequencies: 0.25, 1.0 [Hz]
Traditional CSEM source (101> V/Am?3) MHD source (10" V/Am?)
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Reservoir deftected in both cases




Simulated CSEM imaging results N=|ranona
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3 km depih Used frequencies: 0.05, 0.25, 1.0 [Hz] LABORATORY
Traditional CSEM source (101> V/Am?) MHD source (10'Y7 V/Am?)
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Unclear reservoir location detected with traditional source
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Simulated CSEM imaging results N=|ranona
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4 km depth Used frequencies: 0.05, 0.25, 1.0 [Hz] LABORATORY
Traditional CSEM source (1071° V/Am?) MHD source (10''7 V/Am?)
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Location of reservoir not reliably detected with traditional source

U.S. DEPARTMENT OF




Simulated CSEM imaging results N=|srona:
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5 km depih Used frequencies: 0.05, 0.25, 1.0 [Hz]
Traditional CSEM source (101> V/Am?3) MHD source (10" V/Am?)
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MHD Generator Analysis N=|srona:
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- “lonsslip” has been shown to be issue in VxE=0
high inferaction”™ CCMHD generators J=o(E+uxB)+ 5 (JxB)+ (3 xB) xB)
- B.is electron Hall parameter, B.is lon Hall 1B B
parameter V-J=0
« Added this fo our MHD models

« Engineering strategies needed to overcome
losses/instability

Mathematical analysis for existence and
unigueness of solutions shown

Converted equations into format that can
be solved using commercial EM software
(COMSOL)

« Solve ohm’'s law for electric current paths

«  What 3D impact does ion slip have on
power extractione

* Major assumptions in model
+ Constant B field in one direction
+ Constant velocity (u) in one direction

« Computational verification demonstrated for
known case
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Computationally shown to reduce to the following for
implementation using established solvers:

.]i:EE‘f'-]e
B 1 1561 1_82 8
— T g=0 : N - '
Je=z(uxB) ST 95 32432 0 0  1—28+ 32+ 32
E=VYV o

1e9 Seqg. Faraday; Comparing Power OQuput: B;

1.75 A

—— COMSOL
Ideal Power output

1.50 1

1.25 4

1.00 4

0.75 1

0.50 A

Ideal Power Output [W]

0.25 A

0.00 1
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« MHD Power Generator Evaluation & Design

« Perform parameter sweep of expected ion and electron Hall
parameters
« Assess impact of generator design with ion-slip

« Update 1D performance evaluation & efficiency estimate with
new info on loss mechanisms

« Develop 3D CFD model of generator design

« CSEM
« Simulate geohazards of interest with new S/N ratio
* |nvestigate sensitivity to size and depth of geohazards
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Thanks for your attention
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In CSEM, increasing S/N by reducing instrument noise has diminishing benefits due to
background noise sources

« Traditional CSEM uses signal “stacking” (averaging) to overcome

« Improved positioning/position monitoring of detectors and antenna could have some
benefits

Increasing S/N by increasing signal level has shown significant benefits in the past

Increasing signal could allow reduction or elimination of signal stacking

« Significant improvement (~30x) possible with same fuel use when adopting a pulse power
generator

MHD power generators can achieve the desired dipole strength in compact system

A CCMHD based pulse generator could have comparable efficiency to diesel
generators

CCMHD is not developed or proven in field use as a continuous cycle
« Issues to overcome in design

Questions?
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