In-Situ Applied Coatings for Mitigating Gas Hydrate Deposition in Deepwater Operations Project# DE-FE0031578 – Program Manager: <u>Bill Fincham</u>

<u>Carolyn Koh</u>, Marshall Pickarts, Jose Delgado, Hao Qin *Colorado School of Mines* Vinod Veedu, Erika Brown, *Oceanit*

> U.S. Department of Energy National Energy Technology Laboratory **Oil & Natural Gas 2020 Integrated Review Webinar**

Presentation Outline

- Project Overview & Background & Scope
- Technical Progress & Status
 - Robust Coatings for Deepwater Operations
 - Mitigating Gas Hydrate & Other FA Solids Deposition
- Accomplishments to Date
- Lessons Learned & Synergies
- Project Summary

2

Project Overview

- Funding: DOE: \$1,497,543, Costshare: \$374,386
- Overall Project Performance Dates: 3/2018 3/2022
- Project Participants
 - CSM: Carolyn Koh, Marshall Pickarts, Jose Delgado, Hao Qin
 - Oceanit: Vinod Veedu, Erika Brown
- Overall Project Objectives
 - Develop for *field & commercial deployment* robust pipeline coatings to mitigate hydrate & other solids deposition
 - Multiphase flowloop evaluations in simulated field conditions & field test plans

<u>Technology Background</u>: Hydrates in Flow Assurance

Hydrates Cause Major Economic & Safety Risks During Energy Production & Transportation

- Hydrate formation in oil/gas flowlines
- #1 problem in flow assurance
- Costly to prevent
 - \$1M/mile of pipeline +
 \$100M/year in THI chemicals
- Costly to remove
- **Safety concern** (pipe rupture, personnel fatalities/injuries, environmental hazards

Koh et al., Annual Reviews, 2011

Motivation for Hydrate Deposition

A Major Outstanding & Critical Flow Assurance Problem

- Flowloop tests show agglomeration alone cannot account for large ΔP increase¹
- ExxonMobil field trial suggests hydrate deposits caused majority of ΔP increases²

1. Majid, Koh et al., OTC 2017 5

2. Lachance et al., Energy Fuels 2012

Project Objectives to Address Key FA Technology Challenge

Develop for field & commercial deployment robust pipeline coatings to mitigate hydrate deposition in subsea oil flowlines

- Hydrate-phobic coating system applied in-situ to existing (corroded) pipelines
 – Tested to 8,000 psia, 400 F to -20 F
- Multiphase deposition flowloop evaluations in simulated field conditions
- Investigations under simulated field conditions & field test plans

Sloan & Koh, Clathrate Hydrates of 6 Natural Gases, CRC Press, 2007

<u>Project Scope:</u> Flow Assurance Solids – Hydrates/Wax/Asphaltenes

Flow assurance solids can occur in several steps in subsea oil & gas production leading to *severe safety and economic risks*

Hydrates

Critical Parameters

Pressure Temperature

- - Waxes

Asphaltenes

- Temperature
- Composition

- Pressure
- Composition

Project Organization and Milestones

PROGRESS & CURRENT STATUS OF PROJECT

Optimized Omniphobic Coating for Commercialization

Water-Dispersible, Low Viscosity, Nano-Structured Polymer Topcoat Capable of In-Situ Application to Existing Materials

Surface: Metals,

Concretes, Composites

Thickness: ~100 µm

0

Corroded Pipe Surface Coating Reduces Adhesion Forces

Hydrate-phobic coatings can reduce adhesion/deposition

Hydrate-Phobic Coatings Tests in Deposition Loop

Hydrate-Phobic Coatings Tests in Deposition Loop

Hydrate Deposition Mitigated in Oil-Dominated Systems

Hydrate Deposition Mitigated in Oil/Gas-Dominated Systems

Deposition loop: hydrate formation delayed with coating

System	Surface Treatment	Induction Time [h]	T _{subcool} [°C]	Experimental Details		
	N	10		50% LL, 25% WC,		
Oil-	N	24		600 kg/hr, 540 psia,		
Dominated	Y	>110	~9	Continuous: Film		
		>236		Growth		
		5		30% LL, 100% WC, 564 psia,		
Gas-	Ν	12				
Dominated		>120	~10	Continuous: Film		
	Y	>168		Growth		

Asphaltene Deposition Mitigated in Oil-Dominated Systems

Wax Deposition Mitigated in Oil-Dominated Systems

Cold finger tests show wax deposition reduced by up to 55%

Long-Term Coating Durability

- 6+ Months High Pressure Testing
 - ~3300 Operating Hours
 - Solid Particle/Fluid Flow
 - Pressure Cycles

No corrosion \rightarrow No delamination

In-Situ Application Development

- DragX can be applied in-situ to production lines via pigging
- Can also be applied to new pipes by spray, flush, or paint

Focused Towards Field Deployment

Simulated XoM field trial conditions to design **field test**

Project Summary

- Hydrate film growth/deposition is a major problem in deepwater operations leading to major economic, environmental & safety risks
- Hydrate-phobic coatings can be applied to corroded pipe surfaces to mitigate hydrate deposition
 - Coatings reduce formation & deposition of hydrates, waxes, and asphaltenes in oil/gas lines under simulated field conditions
 - Hydrate & other FA solids multi-resistant coatings for deepwater operations development/testing & field test plan underway

Acknowledgements

- U.S. Department of Energy / NETL for funding & Bill Fincham, Program Manager (Award no.: DE-FE0031578)
- Industry Advisors: Douglas Estanga (Chevron), Khalid Mateen (Total), Doug Turner (ExxonMobil), and Daniel Crosby (Shell)

Appendix

Project Organization for Deployment of Coatings

Gantt Chart

		Phase I (2018-2019)				Phase II (2019-2020)				Phase III (2020-2022)			
Task#	Task	_	Q2		_	Q1	Q2					Q5-6	
1.0	Project Management and Planning												
2.0	Loop Modification and Baseline Testing												
2.1	Loop Modification				-								
2.2	Deposition Experiments							1					
A	Flowloop Upgrade Completed												
3.0	Material Design, Formulation and Optimization												
3.1	Evaluation of Coating Performance												
3.2	Durability and Chemical Compatibility Testing							1					
В	Coating Formulation Optimized												
4.0	Flow Properties Characterization												1
4.1	Lab Characterization					30 		1 – j					
4.2	Flowloop Measurements												
5.0	Documentation and Reporting												1
	TECHNICAL GO/NO GO DECISION POINT 1												
6.0	Shut-in/Startup Testing												
7.0	Simulated Fluid Conditions												
7.1	Adhesion Measurements using Waxes/Asphaltenes												
7.2	Deposition Testing using Waxes/Asphaltenes												
8.0	In Situ Application Method Development												
8.1	Application and Curbing Procedures]					
8.2	Development of Quality Control Parameters												1
С	In Situ Application Achieved												
9.0	Design and Planning for Field Tests												
9.1	Site Selection and Experimental Design								-				
9.2	Multiphase Modeling of Field Site												
D	Field Trial Experimental Plan Developed				_								
10.0	Documentation and Reporting	1											
	TECHNICAL GO/NO GO DECISION POINT 2												
11.0	Loop Scale Testing of Simulated Field Conditions												
11.1	Single Component Flowloop Experiments			4 - 20 - 22									
11.2	Multi-Component Flwoloop Experiments												
12.0	Long Term Evaluation												
12.1	Extended Service Guidelines and Durability					ал. 							9
12.2	Compatibility with In-line Tools												
E	Verify Long Term Coating Durability												
13.0	Initialize Planning for Field Testing												
F	Field Trial Partner/Site Identified			8									
14.0	Documentation and Reporting												
			Curre	nt Pro	aress				Propo	sed T	imelin	e	

COLORADOSCHOOLOFMINES

Bibliography

- Pickarts, M.A., Delgado-Linares, J., Brown, E., Veedu, V., Koh, C.A., 2020, *Evaluation of a Robust, In-Situ Surface Treatment for Pipeline Solids Deposition Mitigation in Flowing Systems.* Proceedings of the Offshore Technology Conference, OTC-30817-MS, Houston, TX, May 2020.
- Pickarts, M.A., Croce, D., Zerpa, L.E., Koh, C.A, 2020, Gas Hydrate Formation & Transportability during Transient Shut-In/Restart Conditions. Proceedings of the Offshore Technology Conference, OTC-30857-MS, Houston, TX, May 2020.
- Pickarts, M.A., Brown, E., Delgado-Linares, J., Blanchard, G., Veedu, V., and Koh, C.A., 2019, *Deposition Mitigation in Flowing Systems Using Coatings*. Proceedings of the Offshore Technology Conference, OTC-29380-MS, Houston, TX, May 2019. https://doi.org/10.4043/29380-MS.
- Abstract & papers: OTC conference (May 2019 (1), May 2020 (2)), NACE 2020, ICGH10 (June 2020)

BACKUP SLIDES

Coating Abrasion Resistance

Taber Abrader Testing (ASTM D4060)

Poorly Adhered Coating (Mass Loss ~ 100mg/1000 cycles) DragX[™] Treatment (Mass Loss ~ 50mg/1000 cycles)

Optimized DragXTM formulation passes abrasion testing standard for internal pipeline coating materials. Typical Epoxy 70-85 mg loss/1000 cycles

Coating Durability and Adhesion

Crosscut tape test (ASTM D3359)

Knife adhesion test (ASTM D6677)

Novolac Epoxy Coated

DragX[™] Treatment

DragXTM shows no peeling, delamination or bubbling, even when subjected to direct cutting

In-Situ Application Method Development

- Subsea lines present unique challenges insitu
- Low temperature and high pressure compared to on shore conditions testing performed (Milestone C: In-situ Application)
 - Low temperature curing showed slightly longer cure times
 - Testing compared 1000 psi curing on a coupon to coupon cured at atmospheric
 - No change in appearance, contact angle, durability
 - Key is to measure dew point to determine cure

Pipeline Fluids, Chemicals & Solvent Compatibility of Coatings

- Flowline fluids: oil, water, brine, natural gas
- Chemicals/solvents: kerosene, xylene, JP8
- Compatibility testing up to 31 days

Initial	31 days	Initial	31 days	Initial	31 days	JP8 - Compound	Amount
JP8	JP8	Karosene	Karosene	Xylane C	Kylane C	C8-C9 aliphatic	9%
						hydrocarbons	
						C10-C14 aliphatic	65%
	-					hydrocarbons	
						C15-C17 aliphatic	7%
			-		Comments of the second	hydrocarbons	
	Contraction of the second					aromatics	18%

Technical Data

Typical Uncured Physical Properties			DragX Treatment				
Color	Clear/White/Blue		Appearance of Coating Film	Clear/White/Blue			
Specific Gravity	1.1 g/cm ³		Maximum Usable Temperature	400°F			
Application Methods	Spray, Dip, or Flood and Drain		Adhesion Test				
Viscosity	100 – 5000 c.p. (Tunable)		(ASTM D3359)	5A after 48 hours			
Base	Water						
VOC Content	None		Flow Assurance* (As conducted by the Colorado	Up to 10-fold reduction in Hydrate			
Shelf Life (Stored Between 50 - 80°F in	>6 months		School of Mines Center for Hydrates)	Formation/Adhesion			
unopened state)	iention Droportion		Salt Fog Corrosion Resistance +				
Typical Application Properties Mixing Time Approximately 15 minutes prior to			Scribing (ASTM B117 + ASTM D1654)	1000 + hr			
(Part A and Part B)	Approximately 15 minutes prior to application		Erosion Resistance	< 5% Mass Loss at sand particle			
	Recommended 60 minutes between coats.		(ASTM G76)	impact of 70 m/s			
Time Between Coats			Wear Resistance (ASTM D4060)	50mg / 1000 cycles / 1 kg			
Coating Window	Additional recoats can be applied for up to 72 hours from first application/mixing of Part A and Part B		Chemical Compatibility Tested (No	Acidic Conditions (pH < 2) Alkaline Conditions (pH >11)			
Full Cure Time	Less than two hours		Reactivity)	Acid Gas (> 1000 ppm CO_2)			
Coating Thickness	1-4 mils recommended			Sour Gas (> 4 ppm H_2S)			
Applicable Surfaces	licable Surfaces Metals, concrete, composites, etc.		Surface Roughness After Application	60-120 µinch			

New deposition section for asphaltene loop

COLORADOSCHOOLOFM

Clean

After deposition

