Ocean & Geohazard Analysis

An AI/ML framework and Smart Tool to identify hazards to offshore infrastructure

Rodrigo Duran^{1,2,4}, **MacKenzie Mark-Moser**^{1,2}, Alec Dyer^{1,2}, Dakota Zaengle^{1,2}, Patrick Wingo^{1,2}, Aaron Barkhurst⁵, Jennifer Bauer¹, and Kelly Rose¹

TECHNOLOGY LABORATORY

IATIONAL

Virtual Project Review Meeting Oct. 26th 2020

This Research was executed through the NETL Research and Innovation Center's Offshore Research field work proposal. Research performed by Leidos Research Support Team staff was conducted under the RSS contract 89243318CFE000003.

This work was funded by the Department of Energy, National Energy Technology Laboratory, on angenny of the United States Government, through a support contract with Leidos Research Support Team (LRST). Neither the United States Government nor any agency there of, nor any of their employees, nor LRST, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the acuracy, completeness, or useful he sof amy information, apparatus, product, or process side sloced, or represents that its use would not infringe privately owned rights. Reference here in to any specific commercial product, process, or service by trade name, tra demark, manufacturer, or otherwise, does not necessarily constitute or imply its endors sement, re commendation, or favoring by the United States Government or any agency thereof.

Offshore FWP, Task 6

Solutions for Today | Options for Tomorrow

Ocean & Geohazard Analysis

Advanced analytics to predict hazards to offshore infrastructure

Taylor Energy oil platform, destroyed in 2004 during Hurricane Ivan, is still leaking in Gulf

Mark Schleifstein, NOLA.com | The Times-Picayune JUL 1, 2013 - 5:05 PM 🗣

Why is this work important?

Success and longevity of offshore operations depends on avoiding hazards.

Issue/R&D Need

- Technology that integrates big data and sciencebased analytics for offshore hazards does not exist.
- Advanced analytics can offer near real-time assessment of risks, and also forecast vulnerabilities.

Task 6: Infrastructure & Metocean technology

Motivation:

- Demand on offshore EEZ in the US and around the world is increasing.
- Offshore infrastructure is expected to increase 50–70% by 2028.
- Offshore structures include:
 - oil & gas
 - pipelines
 - renewable energies
 - bridges
 - tunnels

ENERG

- carbon storage
- undersea internet cables

Exploratory drilling is one of the **riskiest**, **costliest**, and **most prospective** types of oil/gas operations -SINTEF

Data sources for examples:

A) A 1.4-Billion-pixel map of the Gulf of Mexico Seafloor. https://eos.org/scierce-updates/a-1-4-billion-pixel-map-of-the-gulf-of-mexico-seafloor B) Bennett, R., Rochon, A., Schell, T., Bartlett, J., Blasco, S., Hughes-Clarke, J., Scott, D., MacDonald, A., and Rairey, W., 2004, Cruise report, Amundsen 2004-804: Beaufort Sea / Amundsen Gulf / Northwest Passage, June 23 - August 27, 2004: Geological Survey of Canada, Open File 5798, 111 p. C) https://www.mathworks.com/matlabcentral/fileexchange/58320-demos-from-object-recognition-deep-learning-webinar

Offshore Unconventional FWP

Task 6 - Infrastructure and Metocean Technology

Research Problem:

- Changes in the ocean environment (i.e., mudslides or burial from subsea currents, strong 21% weather events or natural fluctuations) have been linked to **billions of dollars of impacts**. ¹⁸
- These events can have a significant effect on the **success and longevity** of offshore infrastructure, as well as affect **safety and cost** during exploration and production activities.

Research Approach:

- Determine current state of knowledge regarding hazardous metocean and bathymetric conditions, and data availability regarding these conditions and historic events.
- EY19 Evaluate if MI/AI model can be developed to better identify current hazardous metocean and bathymetric conditions.
- EY 20 + develop, train, and test ML/AI model to identify current conditions and forecast changes and vulnerability that may impact offshore infrastructure and operations.

Benefit:

• Improved characterization of seabed related hazards in the offshore environment will help to manage and minimize costs and risks during drilling and production operations, and help prevent catastrophic incidents.

Example of data collected: Above - Avg. Bottom Current Velocity (12 yr. avg.) Below – high-resolution bathymetric data and labeled hazards (in orange and purple)

Task 6: Infrastructure & Metocean background

- Mississippi Delta region is one of the areas most hit by major hurricanes in the U.S.; all of GoM at high risk of extreme metocean events
- Mississippi River provides a steady source of unconsolidated sediments
- Many areas in GoM are densely populated with aging infrastructure in regions of metocean and geohazards
- Between 2004–2008, 181 structures and 1673 wells in GoM were destroyed by five hurricanes

ENERG

Approach for Infrastructure and Metocean Technology: The Ocean & Geohazard Analysis Smart Tool

- Identify datasets for diverse hazard analyses
- Develop analytical framework for an Ocean & Geohazard Analysis (OGA) Smart Tool
- Train Machine Learning Models
- MetOcean statistical and probabilistic analyses
- Release data and models through the online platform hosted by Energy Data eXchange (EDX)

ENERGY

Ongoing work:

Collect massive amounts of data, integrate from multiple sources to support analytics

- Digitizing old & unstructured data sets
- Aggregating all open-source data available nationally and internationally

Novel analyses of these datasets using:

- Machine Learning
- Nonlinear Dynamics
- Prediction Statistical Intervals
- Monte Carlo simulations

Data Set	Source	
BOEM bathymetry slope	BOEM, 2017	
BOEM bathymetry curvature	BOEM, 2017	
BOEM bathymetry profile curvature	BOEM, 2017	
BOEM bathymetry plan curvature	BOEM, 2017	
NOAA Coastal Relief Model (Vol, 3, 4, & 5)	NOAA National Geophysical Data Center	
GEBCO 2020	GEBCO Compilation Group (2020))	
SRTM15+ V2.1 and V2	NOAA National Centers for Environmental Information.	
Northern Gulf Coast Digital Elevation Model	NOAA National Centers for Environmental Information.	
Dominant sediment type	Buczkowski, et al., 2020 (usSEABED database)	
Sediment age		
Vertical Sediment Accumulation Rate	Integrated Earth Data Applications (IEDA).	
Sediment shear strength	Holcombe, L. & Holcombe, T., 2004	
Geomorphology	Hance, et al., 2014	
Faults	USGS Faults, Diegel et al, 1995	
Sediment Thickness		
Sediment shear strength	Digitized from diverse sources	
Digitized Landslides	Several sources	
Ocean waves	Several sources	
Ocean currents	Several sources	
Wind	Several sources	
IBTrACS Tropical Storms	NOAA	
Ocean currents (bottom & surface)	Several sources	
Lan dslide locations near Mississippi delta	Nodine et al 2007	
Terrebonne Basin Mapping Area Landslides	NETL Team (Task 5/6)	
Mass Wasting	Twichell (2005)	
Slumps	BOEM (2016)	
Flows	BOEM (2016)	
Landslide locations near Mississippi delta	Nodine et al 2007 and others	

FE's "Data Fabric" simplifies and integrates data management (EDX) with cloud and on-prem scicompute to accelerate digital transformation

Ocean & Geohazard Analysis Smart Tool Workflow

NE ENERGY TECHNOLOGY LABORATORY

Landslide Detection

Locating critical parameters to identify mass wasting geohazards

Objective: Using high-resolution seafloor images, develop a data driven neural network model to identify the locations of submarine landslides.

Model Design

- We use as a base the Fully Convolutional ResNet101, a 101 layer network available with the PyTorch framework.
- The model performs semantic segmentation to create an output mask highlighting landslides given an input image.

Challenges

ENERG

- Imbalanced dataset causes model to favor predicting no landslides. We hope to improve performance with higher penalties for missed landslide predictions.
- Small dataset, to overcome we augment our dataset by flipping rotating and scaling existing images.
- Most models are designed for 3 band input images (Red/Green/Blue) while the images we use have 7 bands. To overcome this we modify an existing model to accept the 7-band input image.

The model trains on Image and Mask pairs shown below.

It is given an input image and scored on how accurately it can produce a mask for the image.

Training Image *3 of 7 bands visualized

Training Mask

Landslide detection results

Current model output showing low likelihood of landslide (black) and high likelihood of landslide (white). Results show model identifying terraces and basins as high likelihood of landslide areas.

Landslide susceptibility assessment workflow

≤30

≤37 ≤43

≤50

≤69

Landslide susceptibility Machine Learning Approach

Utilizing the same input criteria along with common machine learning models to predict landslide susceptibility

- Random Forests (at right)
- Gradient Boosting
- Decision Trees

ENERGY

90% accuracy on test set

1 (High Susceptibility)

0 (Low Susceptibility)

Landslide susceptibility Diverse Approaches

Different approaches:

- GIS Layered Analysis
- Machine Learning Modeling
- Wave-induced bottom pressure vs sediment shear strength
- Erosion due to extreme bottom currents and waves

ENERGY

NE ENERGY TECHNOLOGY LABORATORY

Advanced Probability and Statistics

Generalized Extreme Value (GEV) distributions

$$G(z) = \exp\left\{-\left[1+\xi\left(\frac{z-\mu}{\sigma}\right)\right]^{-1/\xi}\right\}$$

Prediction Intervals & Monte Carlo Simulations

Pathways: Red=attracting White=isolated

Large shelves are isolated:

- WFS
- LaTex
- Yucatan

U.S. DEPARTMENT OF

NETL's Offshore Risk **TL** Modeling Metocean Simulation Tool, CIAM, Continues to Garner International Adoption/Use

Key Pubs:

•Duran, R.; Beron-Vera, F. J.; Olascoaga, M. J. <u>Extracting quasi-Steady Lagrangian transport</u> <u>patterns from the ocean circulation: An</u> <u>application to the Gulf of Mexico</u> *Scientific Reports* **2018**, *8*, 10. DOI:10.1038/s41598-018-23121-y.

•Gough, M. K.; Beron-Vera, F. J.; Olascoaga, M. J.; Sheinbaum, J.; Jouanno, J.; Duran, R <u>Persistent</u> <u>Lagrangian Transport Patterns in the</u> <u>Northwestern Gulf of Mexico</u> *Physical Oceanography* **2019**, 49, 353–367.

•Duran, R., F. J. Beron-Vera and M. J. Olascoaga (2019).CIAM Climatological Isolation and Attraction Model–Climatological Lagrangian Coherent Structures <u>DOI: 10.18141/1558781</u>

External CIAM Users						
Country	Research Institute.	Study region	Status			
Spain	ICM Marine Science Institute Spain.	Mediterranean	Work in progress			
India	National Institute of Oceanography India	Gulf of Bengay surface	Preliminary results obtained			
Mexico	Engineering & Coastal Processes UNAM Mexico	Tropical Atlantic surface	Preliminary results obtained			
Brazil	National Institute for Space Research Brazil	Tropical Atlantic off Brazil coast surface	Peer-reviewed paper under review.			
Mexico	CICESE Ensenada Center for Scientific Research and Higher Education, Mexico	Deep GoM	Maslo, A., et al. (2020). Journal of Marine Systems. https://doi.org/10.1016/j.j marsys.2019.103267			
Mexico	CICESE Ensenada Center for Scientific Research and Higher Education, Mexico	NW GoM Surface	Gough, M. K., et al. (2019). Journal of Physical Oceanography <u>https://doi.org/10.1175/JP</u> <u>O-D-17-0207.1</u>			
Saudi Arabia	Red Sea Modeling and Prediction Group KAUST	Red Sea	Preliminary results obtained KAUST <u>https://assimilation.kaust.</u> <u>edu.sa/Pages/Home.aspx</u>			
USA	UNC at Chapel Hill	Atlantic wind	Preliminary results obtained			

Offshore Unconventional FWP

Key Team Members: PI – Jen Bauer, Kelly Rose - CO-PI – Makenzie Mark-Moser, Rodrigo Duran

NATIONAL ENERGY TECHNOLOGY LABORATORY

Task 6 - Infrastructure and Metocean Technology

Milestone

Ocean & Geohazard Analysis Smart Tool Timeline (present to March 2021)

Upcoming Deliverables				
Date	Description	Status		
03/21	Beta Smart Tool software version for internal release	On track		

Upcoming Milestones			
Date	Description	Status	
12/20	Draft presentation or report detailing current analytical framework	On track	
03/21	Report current model evaluation offering details on model success	On track	

Next steps

- Build out Smart Tool user interface
- Continue integrating datasets

- Train object detection algorithms
- Assess model accuracy and success

https://edx.netl.doe.gov/offshore/portfolio-items/assessing-current-and-future-infrastructure-hazards/ 18

Publications & Presentations Upcoming & Past

Publications

- Duran, R., T. Nordam, M. Serra and C. Barker (under review, 2020). Horizontal transport in oil-spill modeling. Book chapter in Marine Hydrocarbon Spill Assessments, Elsevier. https://arxiv.org/abs/2009.12954
- Nordam T., J. Skancke, R. Duran and C. Barker (under review, 2020). Vertical transport in oil spill modeling. Book chapter in Marine Hydrocarbon Spill Assessments, Elsevier. https://arxiv.org/abs/2010.11890
- Nordam, T. & R. Duran (in press, 2020). Numerical integrators for Lagrangian oceanography. Geoscientific Model Development. https://gmd.copernicus.org/preprints/gmd-2020-154/.
- Gouveia, M. B., R. Duran, J. A. Lorenzzetti, A. T. Assireu, R. Toste, L. P. de F. Assad and D. F. M. Gherardi (submitted, revision in progress, 2020). Persistent meanders and eddies lead to quasi-steady Lagrangian transport patterns in a weak western boundary current. https://arxiv.org/abs/2008.07620
- Zhang, R., P. Wingo, R. Duran, K. Rose, J. Bauer, R. Ghanem (2020). Environmental Economics and Uncertainty: Review and a Machine Learning Outlook. Oxford Encyclopedia of Environmental Economics. https://doi.org/10.1093/acrefore/9780199389414.013.572.
- Gough M. K., F. J. Beron-Vera, M. J. Olascoaga, J. Sheinbaum, J. Jouenno, R. Duran (2019). Persistent Lagrangian transport patterns in the northwestern Gulf of Mexico. J. Phys. Oceanogr., 49, 353–367, https://doi.org/10.1175/JPO-D-17-0207.1
- Duran, R., F. J. Beron-Vera, M. J. Olascoaga (2018). Extracting quasi-steady Lagrangian transport patterns from the ocean circulation: An application to the Gulf of Mexico. Scientific Reports, 8(1), 5218. https://www.nature.com/articles/s41598-018-23121-y

Upcoming Presentations

- Duran, R., Dyer, A., Mark-Moser, M., Bauer, J., Rose, K., Zaengle. D., Wingo, P. A Geospatial Analytical Framework to Identify Seafloor Geohazards in the Northern Gulf of Mexico. AGU Annual Meeting 2020, Session: NH010 Geohazards in Marine and Lacustrine Environments
- Dyer, A., Zaengle, D., Mark-Moser, M., Duran, R., Bauer, J., Rose, K. accepted. Deep Learning to Locate Seafloor Landslides in High Resolution Bathymetry. AGU Annual Fall Meeting (Virtual), 2020. Session: NH007 Data Science and Machine Learning for Natural Hazard Sciences II Posters.

Mark-Moser, M., Romeo, L., Rose, K., Wingo, P., Duran, R. submitted. Assessment of natural and engineered systems data using machine learning to reduce offshore operational risks. Offshore Technology Conference, 2021. Houston, TX.

Products available at https://edx.netl.doe.gov/offshore/

Key Takeaways

- Technology that integrates big data and science-based analytics for offshore hazards does not exist
- Advanced analytics can offer near-real time assessment of risks but also forecast vulnerabilities
- Smart Tool:
 - adapts to data availability/quality
 - adapts to different regions
 - incorporates new analytics and datasets

U.S. DEPARTMENT OF ENERGY

r.duran@theissresearch.org MacKenzie.Mark-Moser@netl.doe.gov

Kelly.Rose@netl.doe.gov

Values Delivered

Advancing the current state of knowledge, improving infrastructure longevity, supporting offshore activities.

Improved characterization of seabed related hazards in the offshore environment will help to manage and minimize costs and risks during drilling and production operations, and help prevent catastrophic incidents.

Products available at https://edx.netl.doe.gov/offshore/

<u>Disclaimer:</u> This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed therein do not necessarily state or reflect those of the United States Government or any agency thereof.

<u>Acknowledgement:</u> Parts of this technical effort were performed in support of the National Energy Technology Laboratory's ongoing research under the Offshore Unconventional Resources – DE FE-1022409 by NETL's Research and Innovation Center, including work performed by Leidos Research Support Team staff under the RSS contract 89243318CFE000003.

