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Success and longevity of offshore operations 
depends on avoiding hazards.

Ocean & Geohazard Analysis
Advanced analytics to predict hazards to offshore infrastructure

Issue/R&D Need  

• Technology that integrates big data and science-
based analytics for offshore hazards does not exist. 

• Advanced analytics can offer near real-time 
assessment of risks, and also forecast 
vulnerabilities.

Why is this work important?

https://edx.netl.doe.gov/offshore

https://www.nola.com/news/e nviro nment/a rticle_1 7cf4d9c -bb58-583d-a d9f-7e617e d8f040.html

https://edx.netl.doe.gov/offshore
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Motivation:

• Demand on offshore EEZ in the US 
and around the world is increasing.

• Offshore infrastructure is expected to 
increase 50–70% by 2028.

• Offshore structures include: 
• oil & gas 
• pipelines 
• renewable energies 
• bridges 
• tunnels 
• carbon storage 
• undersea internet cables

Task 6: Infrastructure & Metocean technology

Data sources for examples: 
A) A 1.4-Billion-pixel map of the Gulf of Mexico Seafloor. https://eos.org/science-updates/a-1-4-billion-pixel-map-of-the-gulf-of-mexico-seafloor
B) Bennett, R., Rochon, A., Schell, T., Bartlett, J., Blasco, S., Hughes-Clarke, J., Scott, D., MacDonald, A., and Rainey, W., 2004, Cruise report, Amundsen 2004-804: Beaufort Sea / Amundsen Gulf / Northwest Passage, June 23 -August 27, 2004: Geological Survey of Canada, Open File 5798, 111 p.
C) https://www.mathworks.com/matlabcentral/fileexchange/58320-demos-from-object-recognition-deep-learning-webinar

Exploratory drilling is one 
of the riskiest, costliest, 
and most prospective 
types of oil/gas operations
-SINTEF

https://eos.org/science-updates/a-1-4-billion-pixel-map-of-the-gulf-of-mexico-seafloor
https://www.mathworks.com/matlabcentral/fileexchange/58320-demos-from-object-recognition-deep-learning-webinar
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Offshore Unconventional FWP

Task 6 - Infrastructure and Metocean Technology

Research Problem:

• Changes in the ocean environment (i.e., mudslides or burial from subsea currents, strong 
weather events or natural fluctuations) have been linked to billions of dollars of impacts.

• These events can have a significant effect on the success and longevity of offshore 
infrastructure, as well as affect safety and cost during exploration and production 
activities.

Research Approach:

• Determine current state of knowledge regarding hazardous metocean and bathymetric 
conditions, and data availability regarding these conditions and historic events.

• EY19 - Evaluate if Ml/AI model can be developed to better identify current hazardous 
metocean and bathymetric conditions.

• EY 20 + - develop, train, and test ML/AI model to identify current conditions and forecast 
changes and vulnerability that may impact offshore infrastructure and operations.

Benefit:

• Improved characterization of seabed related hazards in the offshore environment will help 
to manage and minimize costs and risks during drilling and production operations, and 
help prevent catastrophic incidents.

Example of data collected: 
Above - Avg. Bottom Current Velocity (12 yr. avg.)

Below – high-resolution bathymetric data and labeled hazards 
(in orange and purple)
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• Mississippi Delta region is one of the 
areas most hit by major hurricanes in 
the U.S.; all of GoM at high risk of 
extreme metocean events

• Mississippi River provides a steady 
source of unconsolidated sediments

• Many areas in GoM are densely 
populated with aging infrastructure in 
regions of metocean and geohazards

• Between 2004–2008, 181 structures 
and 1673 wells in GoM were 
destroyed by five hurricanes

Task 6: Infrastructure & Metocean background
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Approach for Infrastructure and Metocean Technology:
The Ocean & Geohazard Analysis Smart Tool 

• Identify datasets for diverse 
hazard analyses

• Develop analytical framework 
for an Ocean & Geohazard 
Analysis (OGA) Smart Tool

• Train Machine Learning Models

• MetOcean statistical and 
probabilistic analyses

• Release data and models 
through the online platform 
hosted by Energy Data 
eXchange (EDX)

Ongoing work: 

Collect massive amounts of data, integrate 
from multiple sources to support analytics

• Digitizing old & unstructured data sets
• Aggregating all open-source data 

available nationally and internationally

Novel analyses of these datasets using:
• Machine Learning
• Nonlinear Dynamics
• Prediction Statistical Intervals
• Monte Carlo simulations
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Data Fabric
Data Set Source

BOEM bathymetry slope BOEM, 2017

BOEM bathymetry curvature BOEM, 2017

BOEM bathymetry profile curvature BOEM, 2017

BOEM bathymetry plan curvature BOEM, 2017

NOAA Coastal Relief Model (Vol, 3, 4, & 5) NOAA National Geophysical Data Center 

GEBCO 2020 GEBCO Compilation Group (2020))

SRTM15+ V2.1 and V2 NOAA National Centers for Environmental Information.

Northern Gulf Coast Digital Elevation Model NOAA National Centers for Environmental Information.

Dominant sediment type Buczkowski, et al., 2020 (usSEABED database)

Sediment age

Vertical Sediment Accumulation Rate Integrated Earth Data Applications (IEDA). 

Sediment shear strength Holcombe, L. & Holcombe, T., 2004

Geomorphology Hance, et al., 2014

Faults USGS Faults, Diegel et al, 1995

Sediment Thickness

Sediment shear strength Digitized from diverse sources

Digi tized Landslides Several sources

O c ean waves Several sources

O c ean currents Several sources

W in d Several sources

IB TrACS Tropical Storms NOAA

O c ean currents (bottom & surface) Several sources

L an dslide locations near Mississippi delta Nodine et al 2007

Terrebonne Basin Mapping Area Landslides NETL Team (Task 5/6)

M ass W asting Twichell (2005)

Slu mps BOEM (2016)

Flo ws BOEM (2016)

L an dslide locations near Mississippi delta Nodine et al 2007 and others

FE’s "Data Fabric" simplifies 
and integrates data 
management (EDX) with 
cloud and on-prem sci-
compute to accelerate digital 
transformation
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Select type 
of analysis 

Ocean & Geohazard Analysis Smart Tool Workflow

Choose offshore 
region of interest 

Select hazards for 
risk assessment

Advanced risk analytics 
and spatial visualization 

❑ All known hazards
❑Mudslide
❑Wind event
❑Wave event
❑ Current event
❑ Erosion
❑ Earthquake
❑Hurricane
❑Hazmat spill

Default data, 
default analysis

Custom data, 
default analysis

Default data, 
custom analysis

Custom data, 
custom analysis
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Landslide Detection
Locating critical parameters to identify mass wasting geohazards

Training Image Training Mask

The model trains on Image and Mask pairs shown 
below.

It is given an input image and scored on how 
accurately it can produce a mask for the image.

*3 of 7 bands visualized

Challenges
• Imbalanced dataset - causes model to favor predicting no landslides. 

We hope to improve performance with higher penalties for missed 
landslide predictions.

• Small dataset, to overcome we augment our dataset by flipping 
rotating and scaling existing images.

• Most models are designed for 3 band input images (Red/Green/Blue) 
while the images we use have 7 bands. To overcome this we modify an 
existing model to accept the 7-band input image.

Objective: Using high-resolution seafloor images, develop a data 
driven neural network model to identify the locations of submarine 
landslides.

Model Design
• We use as a base the Fully Convolutional ResNet101, a 101 layer 

network available with the PyTorch framework.
• The model performs semantic segmentation to create an output 

mask highlighting landslides given an input image.
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Landslide detection results

Current model output 
showing low likelihood of 
landslide (black) and high 

likelihood of landslide 
(white). Results show 

model identifying 
terraces and basins as 

high likelihood of 
landslide areas.

Terrace

Mini-Basin
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Landslide susceptibility assessment workflow
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Landslide susceptibility 
Machine Learning Approach

Utilizing the same input criteria 
along with common machine 
learning models to predict 
landslide susceptibility
• Random Forests (at right)
• Gradient Boosting
• Decision Trees

90% accuracy on test set
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Landslide susceptibility 
Diverse Approaches

Different approaches:
• GIS Layered Analysis
• Machine Learning 

Modeling
• Wave-induced bottom 

pressure vs sediment 
shear strength

• Erosion due to 
extreme bottom 
currents and waves

Max wave-induced bottom pressureGasFaults

Geomorphology Hydrates Mud Volcanoes

Salt Diapirs Sediment Type

Slope

Curvature

Sediment Shear Strength Plumes

Pockmarks

Seeps



Advanced Probability and Statistics

Generalized Extreme Value (GEV) distributions
Prediction Intervals & Monte Carlo 

Simulations
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Pathways:
Red=attracting
White=isolated

Large 
shelves are
isolated:
• WFS
• LaTex
• Yucatan

https:/edx.netl.doe.gov/offshore  
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NETL’s Offshore Risk 
Modeling Metocean
Simulation Tool, CIAM, 
Continues to Garner 
International 
Adoption/Use

Key Pubs:

•Duran, R.; Beron-Vera, F. J.; Olascoaga, M. J. 
Extracting quasi-Steady Lagrangian transport 
patterns from the ocean circulation: An 
application to the Gulf of Mexico. Scientific 
Reports 2018, 8, 10. DOI:10.1038/s41598-018-
23121-y.

•Gough, M. K.; Beron-Vera, F. J.; Olascoaga, M. J.; 
Sheinbaum, J.; Jouanno, J.; Duran, R. Persistent 
Lagrangian Transport Patterns in the 
Northwestern Gulf of Mexico. Journal of 
Physical Oceanography 2019, 49, 353–367.

•Duran, R., F. J. Beron-Vera and M. J. Olascoaga 
(2019).CIAM Climatological Isolation and 
Attraction Model–Climatological Lagrangian
Coherent Structures DOI: 10.18141/1558781

External CIAM Users
Country Research Institute. Study region Status

Spain ICM Marine Science Institute Spain. Mediterranean Work in progress

India National Institute of Oceanography India
Gulf of Bengay

surface
Preliminary results 

obtained

Mexico
Engineering & Coastal Processes UNAM 

Mexico
Tropical Atlantic 

surface
Preliminary results 

obtained

Brazil National Institute for Space Research Brazil
Tropical Atlantic off 
Brazil coast surface

Peer-reviewed paper 
under review.

Mexico
CICESE Ensenada Center for Scientific 

Research and Higher Education, Mexico
Deep GoM

Maslo, A., et al. (2020).  
Journal of Marine Systems.
https://doi.org/10.1016/j.j

marsys.2019.103267

Mexico
CICESE Ensenada Center for Scientific 

Research and Higher Education, Mexico
NW GoM Surface

Gough, M. K., et al . (2019). 
Journal of Physical 

Oceanography 
https://doi.org/10.1175/JP

O-D-17-0207.1

Saudi 
Arabia

Red Sea Modeling and Prediction Group 
KAUST

Red Sea

Preliminary results 
obtained KAUST

https://assimilation.kaust.
edu.sa/Pages/Home.aspx

USA UNC at Chapel Hill Atlantic wind
Preliminary results 

obtained

https://www.nature.com/articles/s41598-018-23121-y%20/t%20_blank
https://doi.org/10.1175/JPO-D-17-0207.1%20/t%20_blank
https://edx.netl.doe.gov/dataset/ciam-climatological-isolation-and-attraction-model-climatological-lagrangian-coherent-structures
https://doi.org/10.1016/j.jmarsys.2019.103267
https://doi.org/10.1175/JPO-D-17-0207.1
https://assimilation.kaust.edu.sa/Pages/Home.aspx%20/t%20_blank
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Offshore Unconventional FWP
Key Team Members: PI – Jen Bauer, Kelly Rose - CO-PI –Makenzie Mark-Moser, Rodrigo Duran

Task 6 - Infrastructure and Metocean Technology

Go / No-Go
• End of EY/FY19: Ensure 

sufficient data are 
available to support 
future work; if it is, plan 
to continue into 
EY/FY20. Determined 
sufficient data are 
available to build 
robust ML/AI model 
(02/2020)

• End of EY/FY21: 
Evaluate TRL for smart 
tool and determine if 
additional development 
or enhancements are 
needed to obtain target 
TRL (4). 

Number Expected Completion Date Description
EY19.6.A 06/19 Develop internal catalog documenting data resources collected.

EY19.6.B 09/19 Document libraries and software used to help collect, process, and label data.

EY19.6.C 12/19 Statistics summarizing metocean and bathymetric metadata.

EY19.6.D 02/20 Determine if sufficient data are available to support future work; if it is, plan to continue into EY/FY20.

EY20.6.E 06/20 Begin developing analytical framework plan for metocean and bathymetry data.

EY20.6.F 09/20 Outline analytical logic to support the development of a beta smart tool.

EY20.6.G 12/20 Draft presentation or report detailing current analytical framework.

EY20.6.H 03/21 Report current model evaluation offering details on model success.

EY21.6.I 06/21 List summarizing identified improvements and enhancements for analytical logic and smart tool.
EY21.6.J 10/21 Statistics demonstrating success of enhancements on key smart tool functions.
EY21.6.K 02/22 Evaluate TRL for smart tool and determine if additional development or enhancements are needed to obtain target TRL.

Additional milestones will be defined based off Go/No-Go decision.

/Milestones

EY/FY19 EY/FY20 EY/FY21+

A D E G

06/19 02/20 06/20 12/20

F K

09/20 02/22

6 9 12 339 12 6 9 12 3

2
3

B

09/19

C

12/19

4

6

H

03/21

I

06/21

J

10/21

3
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Next steps

Ocean & Geohazard Analysis Smart Tool
Timeline (present to March 2021)

• Train object detection algorithms 

• Assess model accuracy and success

• Build out Smart Tool user interface

• Continue integrating datasets

Upcoming Deliverables
Date Description Status
03/21 Beta Smart Tool software version for internal release On track

Upcoming Milestones
Date Description Status
12/20 Draft presentation or report detailing current analytical framework On track
03/21 Report current model evaluation offering details on model success On track



19

Publications

• Duran, R., T. Nordam, M. Serra and C. Barker (under review, 2020). Horizontal transport in oil -spill modeling. Book chapter in Marine Hydrocarbon Spill Assessments, Elsevier. 

https://arxiv.org/abs/2009.12954

• Nordam T., J. Skancke, R. Duran and C. Barker (under review, 2020). Vertical transport in oil spill modeling. Book chapter in Marine Hydrocarbon Spill Assessments, Elsevier. 

https://arxiv.org/abs/2010.11890

• Nordam, T. & R. Duran (in press, 2020). Numerical integrators for Lagrangian oceanography. Geoscientific Model Development. https:/ /gmd.copernicus.org/preprints/gmd-2020-154/.

• Gouveia, M. B., R. Duran, J. A. Lorenzzetti, A. T. Assireu, R. Toste, L. P. de F. Assad and D. F. M. Gherardi (submitted, revision in progress, 2020). Persistent meanders and eddies lead to quasi -

steady Lagrangian transport patterns in a weak western boundary current. https://arxiv.org/abs/2008.07620

• Zhang, R., P. Wingo, R. Duran, K. Rose, J. Bauer, R. Ghanem (2020). Environmental Economics and Uncertainty: Review and a Machine Learning Outlook. Oxford Encyclopedia of 

Environmental Economics. https://doi.org/10.1093/acrefore/9780199389414.013.572.

• Gough M. K., F. J. Beron-Vera, M. J. Olascoaga, J. Sheinbaum, J. Jouenno, R. Duran (2019). Persistent Lagrangian transport patterns in the northwestern Gulf of Mexico. J. Phys. Oceanogr., 49, 

353–367, https://doi.org/10.1175/JPO-D-17-0207.1

• Duran, R., F. J. Beron-Vera, M. J. Olascoaga (2018). Extracting quasi-steady Lagrangian transport patterns from the ocean circulation: An application to the Gulf of Mexico. Scientific Reports, 

8(1), 5218. https://www.nature.com/articles/s41598-018-23121-y

Upcoming Presentations

Duran, R.,  Dyer, A.,  Mark-Moser, M.,  Bauer, J.,  Rose, K.,  Zaengle. D.,  Wingo, P.  A Geospatial Analytical Framework to Ide ntify Seafloor Geohazards in the Northern Gulf of Mexico. AGU 
Annual Meeting 2020, Session:  NH010 - Geohazards in Marine and Lacustrine Environments

Dyer, A., Zaengle, D., Mark-Moser, M., Duran, R., Bauer, J., Rose, K. accepted. Deep Learning to Locate Seafloor Landslides in High Resolution Bathymetry. AGU Annual Fall Meeting (Virtual), 
2020. Session: NH007 - Data Science and Machine Learning for Natural Hazard Sciences II Posters. 

Mark-Moser, M., Romeo, L., Rose, K., Wingo, P., Duran, R. submitted. Assessment of natural and engineered systems data using machine learning to reduce offshore operational risks. Offshore 
Technology Conference, 2021. Houston, TX.

Publications & Presentations
Upcoming & Past

Products available at 
https://edx.netl.doe.gov/offshore/

2019

https://arxiv.org/abs/2010.11890
https://arxiv.org/abs/2008.07620
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Key Takeaways

Values Delivered

r.duran@theissresearch.org
MacKenzie.Mark-Moser@netl.doe.gov

Kelly.Rose@netl.doe.gov

Advancing the current state of 
knowledge, improving infrastructure 
longevity, supporting offshore activities.

Improved characterization of seabed 
related hazards in the offshore 
environment will help to manage and 
minimize costs and risks during drilling 
and production operations, and help 
prevent catastrophic incidents.

• Technology that integrates big data and 
science-based analytics for offshore 
hazards does not exist 

• Advanced analytics can offer near-real 
time assessment of risks but also 
forecast vulnerabilities

• Smart Tool:
• adapts to data availability/quality
• adapts to different regions
• incorporates new analytics and 

datasets

Products available at 
https://edx.netl.doe.gov/offshore/

mailto:r.duran@theissresearch.org
mailto:MacKenzie.Mark-Moser@netl.doe.gov
mailto:Kelly.Rose@netl.doe.gov
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Disclaimer: This presentation was prepared as an account of work sponsored by an agency 
of the United States Government. Neither the United States Government nor any agency 
thereof, nor any of their employees, makes any warranty, express or implied, or assumes 
any legal liability or responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference therein to any specific commercial product, 
process, or service by trade name, trademark, manufacturer, or otherwise does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof. The views and opinions of authors 
expressed therein do not necessarily state or reflect those of the United States 
Government or any agency thereof.
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