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Problems of water use in hydraulic fracturing
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« 106 to 107 gallons of water is used per well to hydraulically fracture shale reservoirs.
« Cost of water supply and flow-back water treatment are large ($50K to $1M per well).

» Typically > 70% of injected water remains in the reservoir matrix pores and restricts
counter-current flow of gas back to wells.

* A rational basis for reducing water use can be very beneficial.



Research Challenges

* Transport properties controlling water and gas distributions are spatially
variable, and fracture connectivity is complex.

 Actual distributions of matrix and fracture permeabilities will never be known.

* Improved, physically-based, practical models are needed to optimize water use
for efficient hydrocarbon recovery.

Goals and Objectives

* Improve understanding and predictions of water entry and redistribution in low
permeability materials

* |[dentify the hierarchy of factors controlling water blocking
* Improve simple models of water-gas transport in unconventional reservoirs

« Understand impacts of varying water injection volumes and shut-in times on
production



Pressure, viscosity, permeability, and time determine leak-off rates

Fracturing fluid pressure at the fracture-matrix
interface, -F, ,, is constrained between the depth-
dependent frac P and hydrostatic 7.

* |~ | at fracture-matrix interfaces in reservoirs ar
huge. At2km depth, shut-in ~,, = -30 MPa.

Under these conditions, the imbibition volume per unit
area I(t) and the wetting front distance L(?)are
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http://www.glossary.oilfield.slb.com/en/Terms.aspx?Lookin=term%20name&filter=pressure%20gradient

where nis the shale porosity, u is the fluid viscosity, £~ sis the wetting front capillary pressure, kis the

shale permeability, and fis time.

* Under reservoir stimulation conditions, influences of capillary pressure at the wetting front
(including wettability) on flow are predicted to be of secondary importance because |~ y| >> F.;.




Water imbibition dependence on permeability and time

Hydraulic fracturing at 2 km depth, predictions for A-

Tokunaga, Water Resour. Res., 2020
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large interconnected areas, > 10 m?/well!

« Minimizing shut-in times reduces water block
thicknesses and precipitation along fractures,
hence can improve production.
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Simple measurements of sorptivity can be used to estimate A
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Challenges for Laboratory Water Permeability
Measurements on Unconventional Reservoir Samples
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Method for measuring very low Sand Ain uD to sub-nD
materials is being developed
Beginning measuring very low water flow rates needed to quantity A(water)
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The wettability influence on water imbibition
iInto shales is important at low pressures.

1. Quantifying very low imbibition rates
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2. Encountering anomalous imbibition trends.

3. Directly measuring Sand k(water) on same
samples to test S-4 predictions, and examine
impacts of wettability.



Experimental Investigation of Spontaneous Imbibition
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Cumulative imbibed vol. fer unit flow
area (cm3/cm?)

Water imbibition during shut-in period
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Cumulative imbibed water is much lower in shale sample than in sandstone.



Cumulative imbibed volume and Sorptivity

CUM. IMBIBED VOLUME PER FLOW AREA (cm3/cm?) 1.10E03 SORPTIVITY (|v| /SEC_O.S)
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Case Study
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Reducing shut-in time can minimize water-
blockages in shales




Dependence of water-block damage on capillary pressure
and fluid viscosity during countercurrent flow
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Controllable parameters affecting capillary pressure and
VISCOSIty

20c0s6

Capillary pressure, P. =

r
« Decreasing the interfacial tension (o) between two fluids reduces capillary
pressure.
v Use of surfactant solutions
 Increasing the wettability angle (8) reduces capillary pressure.

 Increasing the pore radius (r) reduces capillary pressure.
v Small acid treatments near the wellbore

: : k OP
Fluid velocity, vy = - o
 |Increasing fluid viscosity (u) reduces the rate of spontaneous imbibition.

v Use of fluid thickener (gellant) e.g. Xanthan (guar) gum
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Xanthan gum (Guar) increases the viscosity of water

e Dl water

e Dl water + 0.28 wt.% guar
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Surface tension, o (mN/m)

Effect of guar concentration on the surface tension of water
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Effect of surfactant concentration on the surface tension of water

Surface tension, o (mN/m)
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Surface tension, o (mN/m)

Effect of temperature on the surface tension of water
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Use of surfactant may help to minimize water-block effects
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« Cumulative imbibed volume of pure deionized (Dl) water is greater than
that of the surfactant solution.



Use of thickened fluid may help to minimize water-block effects

Square root of time, -5 (min°5)
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« Imbibition rate of pure water is higher than that of the guar solution.



Cumulative imbibed volume per unit
flow area after 200 mins (cm3/cm?2)

Results Summary
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Addition of surfactant to the base fluid decreased cumulative imbibed volume mainly due
to reduction of the driving force (capillary pressure).

Addition of guar to the base fluid decreased sorptivity mainly due to reduction of fluid
velocity.

Use of surfactant solution and thickened fluid generally reduces the cumulative imbibed
volume and rate of imbibition into shale.



summary

Developed a practical relation for predicting imbibition into rocks.
Shut-in wetting front distances are limited to cm scale into shale matrix.

Recommend short shut-in times to minimize formation damage and reduce
water loss.

Recommend the use of thickened fluid and possible surfactants to reduce
water loss.

Developing method for direct measurements of water permeabilities in nano-
Darcy materials.

Developing physics-guided machine learning model for predicting
spontaneous imbibition into porous and fractured media.
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Narrow

Next Steps "

Test imbibition-permeability relations in nano-Darcy
shales.

Test impacts of wettability on imbibition-permeability
relations.

Manipulate frac fluid wetting properties to minimize
water damage

Design and conduct 1
experiments for counter- . B
current gas flow i

Zero air-flow
Chamber

Expand model to include
nonlinear fluids under shut-
N scenario




