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Oilfield Mineral Scale Mitigation Technology
Development

Goal

*  The objective of the effort is to investigate mineral scale deposition
in wellbores (i.e. barite, calcite) including scale reaction rates and
possible inhibitors, and mitigation efforts.

Challenge

« Mineral scale has serious deleterious effects on wells.
— Occludes pipes, chokes, safety valves, etc.

« Threat to flow-assurance
— Pressure drop

— Shut-ins
; Exp'er?swe Yvorkover operations L. Barite deposition in casing (pipe)
 Costs millions in lost sales and remediation expenses... during production. From Stack
https://www.epa.gov/sites/producti
A pproac h on/files/documents/stack.pdf

* Experimental and modeling approaches to prevent scale formation



Experimental and Modeling Approaches to
Preventing Scale Formation.

Why and How?
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EDS Element maps of coupons exposed to HFF
using de-ionized water as base fluid. A: aerated
two-day exposure, B: aerated 14-day exposure , C:
degassed two-day exposure, D: degassed 14-day
exposure.
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Inverse distance weighted map showing distributions of
barite saturation indices. Saturation indices were
calculated from Marcellus Shale production water as
reported in the U.S. Geological Survey National Produced
Waters Geochemical Database (Blondes et al, 2018).

(Mackey et al., 2020)
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« What impacts do hydraulic fracturing

fluids have on the steel production casing

during the shut-in period of the well?

* |s there a relationship between corrosion
and mineral scale formation?

» Aerated versus degassed hydraulic
fracturing fluids?

“Characterizing mineralization on low carbon steel
exposed to aerated and degassed synthetic
hydraulic fracture fluids.” (Mackey et al., submitted)

Schematic of unconventional hydraulic fracturing operation.
(1) Production water is transported from production tanks to
(2) larger aboveground storage tanks, where it is combined
with surface water and aerated. (3) Aerated base fluid is
enhanced with chemical additives and combined with
proppants then (4) pumped at high pressures through the
production tubing into the reservoir.



Oilfield Mineral Scale Mitigation Technology Development

Experimental Matrbx Wh and How?
Base fluid Sample ID 2l Experiment Conditions y
P Time (days) P \ -
ASP-0 0 Not Reacted
I Spring water base fluid |agp.p 2 2000 PSI, 50°C, N, Headspace
I
3 IASP-14 14 2000 PSI, 50°C, N, Headspace
= o ADI-0 0 Not Reacted
< De'on'zifu‘i"éater base | \pi-2 2 2000 PSI, 50°C, N, Headspace
ADI-14 14 2000 PSI, 50°C, N, Headspace
. DGSP-0 0 Not reacted
8 | Spring water base fluid |pGsp. 2 2000 PSI, 50°C, CO, Headspace
LL
'-I'- DGSP-14 14 2000 PSI, 50°C, CO., Headspace
g DGDI-0 0 Not reacted
o Deionized water base
a fluid DGDI-2 2 2000 PSI, 50°C, CO, Headspace
DGDI-14 14 2000 PSI, 50°C, CO., Headspace

Surface morphology and mineralogy was characterized using SEM/EDS and
XRD. Changes in fluid chemistry were analyzed via ICP-OES (Ba, Ca, Fe, K, Mg,
and Sr) and IC (SO, and ClI).

“Characterizing mineralization on low carbon steel exposed to aerated and degassed synthetic hydraulic
fracture fluids. (Mackey et al., submitted)
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2-Day

Primary mineral precipitates Exposure
* Barite (BaSO,)
* Halide group minerals (NaCl, CaCl,, StCl,))
* Iron oxyhydroxides (Fe*3,0, #H,0),
* Green rusts

© ([Fe?™ Fe’r (HO™) > [CO*5:2H,017)

¢ (B, Fe* (HOM)™ [CI aH, 0]

25um

(Mackey et al., submitted)



Oilfield Mineral Scale Mitigation Technology Development

Primary mineral precipitates

* Barite (BaSO,)

* Halide group minerals (NaCl, CaCl,, StCl,)

* TIron oxyhydroxides (Fe™3,0, #H,0),

* Green rusts
¢ ([Fe?, Fe* (HO™), 2+ [CO? 3 2H,0)
¢ ([Fe?*; Fe* (HO )™ [CI -4H, O]

* Iron Salts occurred in mixed morphologies of

amorphous, fibrous and flakey

* BaSO, Crystals
* FEuhedral with tabular crystal habit
* Both single crystal and twinned aggregates
* On surface and within interstitial corrosion

fabrics

HV det mag |:| HFW spo
20.00 kV|BSED | 2 500 x 99mm 102 5.0




Oilfield Mineral Scale Mitigation Technology Development

2 Day Exposure

* BSED images showing Z-contrast reveal |
adsorption of Ba onto Iron Salts

(Mackey et al., 2019)




Experimental Conclusions

* Major Findings:

— Mineral scale precipitation occurs early on (first 48 hours) in solutions before
Interaction with reservoir mineralogy.

— Barite scale can occur within the wellbore despite the addition of scale
Inhibitors to the injection fluid.

— Scale formation is, in part, dually facilitated and worsened from sulfate
release during oxidation of steel by persulfate breakers and the presence of
iron oxyhydroxides.

— Mineral scale and corrosion was ubiquitous despite varying base-fluid and
dissolved gas compositions.



georeferenced + time series + production data + geologic attribute data + operations data + etc.,

Acidity
Alkalinity (Total as CaCO3)
Aluminum

Ammonia Nitrogen

Arsenic

Bariu

Benzene

Beryllium

Biochemical Oxygen Demand
Boron

Bromide

Cadmium

Calcium

Chemical Oxygen Demand
Chlorides

Chromium

Cobalt

Copper

Ethylene Glycol

Gross Alpha

Gross Beta

Hardness (Total as CaCO3)
Iron - Dissolved

Iron - Total

Lead

Table 1. List of analytes measured in wastewater produced from

Lith

m
Magnesium
Manganese

MBAS (Surfactants)
Mercury

Molybdenum

Nickel

Nitrite-Nitrate Nitrogen
Oil & Grease

pH

Phenolics (Total)
Radium 226

Radium 228

Selenium

Silver

Sodium

Specific Conductance
Strontium

Sulfates
Thorium
Toluene

Total Kjeldahl Nitrogen
Total Suspended Solids
Uranium

Zine

When and Where?

A LOT OF DATA

(182,886 data points)




Oilfield Mineral Scale Mitigation Technology Development

Values represent single sampling
event
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Criteria based in part on Dahm et al., 2011; Jones et al., 2011; Sherwood et al., 2016

From Waste to Insight: Generating High Resolution Geochemical Models from
Publicly Available Residual Waste Profiles. (Mackey et al., 2020)
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«  Two main producing regions
A : h * Produced water heterogeneity?

Majority of PW is recycled in ongoing HF
* Mineral scale tendency?

Temporal Changes in reservoir chemistry?

Calculated Mineral S.l. in Geochemist’s
Workbench

T““xa,.w. 4

SN /
ind’ T Wlgerion

" (PADEP,2020).. | Geostatistics (IDW) and mapping in ArcMap 10

From Waste to Insight: Generating High Resolution
Geochemical Models from Publicly Available Residual
Waste Profiles. (Mackey et al., 2020)
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Table 3. Average TDS and mineral saturation indices listed per county.

n= 1DS(ppm) Witherite Barite Strontianite Calcite Gypsum Halite Dolomite
Bradford G4 236646 4.15 326 236 -0.14 -1.89 087 Na
Sullivan 19 223233 4.10 322 231 -0.135 -1.90  -1.00 NA
Susquehanna 21 86664 445 3.33 222 -0.17 -212 191 Na
Wyoming 9 107342 4.51 328 237 -0.02 -2100 -1.71 NA
Lycoming 3 210537 3.65 3.17 1.86 -0.35 -190  -1.10 NA
Washington 13 186615 2.59 1.7 207 -0.06 -1.81  -1.24 0.40

From Waste to Insight: Generating High Resolution Geochemical Models from
Publicly Available Residual Waste Profiles. (Mackey et al., 2020)
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Modeling Findings
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Future Modeling and Analytics

Identify Data Sources

!

Gather Data

v

Data transformations
(ilr transformations, units, etc.)

l

QC/QA

Unsupervised Machine

Learning Algorithm
(Emergent Self Organizing Map)

Objectives:

* Formation Heterogeneity

* Modeling scale risk and
prevention.

* Can we identify frac hits?

* Parent/child relationship?

Test Scenarios

Geochemical Model
(OLI Systems,
Inc.)

=)

nnnnnnnn

Inverse distance weighted map showing distributions of
BaSO, saturation indices in Marcellus Shale produced water
(Mackey et al., submitted)

Ground-truth to
experimental and field
samples




Synergy Opportunities

— Although we are focused specifically on the wellbore and related
equipment, this project has cross-cutting ties to several other
NETL projects - primarily those related to understanding and
predicting reservoir behavior.

23



Benefit to the Program

* Mineral scale will coat perforations, casing, production tubulars,
valves, pumps, and downhole completion equipment Iimiting
production and eventually requiring abandonment of the
well

* It’s expensive to deal with (often requiring the
removal/replacement of the production lining) and makes for an
unsafe environment around the well.

24
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