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Addressing barriers in unconventional N = |NATIONAL
reservoirs — How chemistry affects flow T LSS

Potential Barriers to Production? This project focuses on chemical processes that can impact

How does chemistry influence production permeability in hydraulically-generated fractures.
curves? — Permeability alteration

3.1: Geochemical Controls on Mineral Precipitation
* Fluid chemistry and flow pathway impact where
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Addressing barriers in unconventional N = |NATIONAL
reservoirs — Technology Benchmarks TLJASORRIOR"

3.1: Geochemical Controls on Mineral Precipitation

: : : ® Ability to predict and model
* Fluid chemistry and flow pathway impact where "GA reservoir chemical reactions
fracture face m.meral reactlons-occ.ur | | e - that impact permeability of
* Chemical reactions change during injection, shut-in, and | 0- GasAssociation ~ N significant interest in both
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* Which chemical gradients have the most significant RESOURCES TECHNOLOGY CONFERENCE unconventional oil & gas
impact?

3.2: Parameterizing Redox in Hydraulically-Fractured Shales
e (QOxidation-reduction reactions influence fracture face
mineral reactions

Acid-base chemistry is known
to impact mineral reactions —
little is known about the
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Geochemical Reactions Affecting Reservoir N =|NATIONAL
Porosity and Permeability — Major Insights to Date  [TLJAscraicr"

3.1: Geochemical Controls on Mineral Precipitation

* Produced water chemical signals can be used to identify classes of mineral reactions occurring during different
operational phases of an unconventional well

* New techniques for characterizing sources of Ba in produced water confirm a significant geologic source, and Ba in
shale can promote barite mineral scale nucleation in Marcellus Shale

* High fluid flow across fracture faces relates to increased barite precipitation along primary flow pathways, and
different chemical processes control barite precipitation during injection and shut-in operational periods

3.2: Parameterizing Redox in Hydraulically-Fractured Shales
e Oxidation-reduction reactions occur under reservoir conditions, and involve injected fracturing fluid additives +
shale minerals

U.S. DEPARTMENT OF

10/30/2020




3.1 Geochemical controls on mineral precipitation - N anonaL

Documented chemical changes for different
operational periods in hydraulically-fractured reservoir
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MSEEL Produced Water Reveals Reservoir Chemical Changes
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Phan, TT., Hakala, J.A., Sharma, S. “Application of Geochemical Signals in Unconventional Oil and
Gas Reservoir Produced Waters Towards Characterizing In Situ Geochemical Fluid-Shale
Reactions.” Science of the Total Environment (2020).
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Carbonate dissolution during shut
in — Detected in multiple chemical
ratios in early produced water
(Sr/Na, Ca/Na, B/Na, and 8/Sr/86Sr)
Fracturing chemicals oxidize sulfide
minerals — evidence in trace metal
signatures

Contact of produced water with
clays and organic matter — °Li
enrichment

Fracturing fluid and formation
water mixing — produced water
compositional transition

Changes in reservoir oxidation
state - Under oxidizing conditions
during fracturing period with
transition to reducing environment
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3.1 Geochemical controls on mineral precipitation - N anonaL
Improved techniques for characterizing sources and |5~ frecinoiocy

reactivity of Ba to form barite mineral scale (Marcellus) HABORATORY

Produced water Ba isotope signatures Fluid-mineral reactions can promote reservoir
suggest a significant subsurface source barite precipitation, even with treated water
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High flow rate results in greater barite precipitation ¥L ?;;Lz'ligev

along the fracture face LABORATORY
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3.1 Geochemical Controls on Mineral Precipitation -

Effects of fracture face reactions on near-matrix zone

S . " T L R5SRRToRY
Fracture surface coating. is influenced by fluid composition and flow
rate, the operational period of a well, and impacts shale matrix

N NATIONAL

reactions
facurd ol St omoerre and s Significant fracture face barite coating  Limited fracture face barite coating
Less matrix alteration Greater matrix alteration
MSEEL7472.7 MSEEL7473

Shale
matrix

Ba%* + SO,% = BaSO, (barite)

Fe(ll) + oxidant = Fe(lll) +
(other chemical species)

FeS, + oxidant = Fe(ll) + SO,*
+ (other chemical species)
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W. Xiong et al., 2019, American Chemical Society National Meeting




3.1 Geochemical Controls on Mineral Precipitation - NATIONAL
Insights and Next Steps N

e . " T L R8RSRy
Fracture surface coating. is influenced by fluid composition and flow

ro’re,T{rhe operational period of a well, and impacts shale matrix
reactions

flowing through at shale gas reservoir

fractured Marcellus Shale temperature and pressure
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Final Project Period (FY21 funding):

e 3.1: Characterize difference between expected near-wellbore vs. extended fracture
network chemical conditions that influence fracture face mineral reactions
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Geochemical Reactions Affecting Reservoir N=|naTonaL
Porosity and Permeability — Major Insights to Date  [TLJAscraicr"

3.1: Geochemical Controls on Mineral Precipitation

* Produced water chemical signals can be used to identify classes of mineral reactions occurring during different
operational phases of an unconventional well

* New techniques for characterizing sources of Ba in produced water confirm a significant geologic source, and Ba in
shale can promote barite mineral scale development in Marcellus Shale

* High fluid flow across fracture faces relates to increased barite precipitation along primary flow pathways, and
different chemical processes control barite precipitation during injection and shut-in operational periods

3.2: Parameterizing Redox in Hydraulically-Fractured Shales

e Oxidation-reduction reactions occur under reservoir conditions, and involve injected fracturing fluid additives,
shale organic matter, and shale minerals

* Organic matter is a significant mediator in controlling electron transfer between fluids and shale
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How do organic and redox geochemistry relate to the mineral N=|NATIONAL
oge am [ENERGY
__scale issues identified by prior experimental efforts? TL [EsHnoroey
LABORATORY
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Limited Data on Redox
Reactions — Next

Critical Frontier in UOG
Geochemistry Research

What is reactive during this redox transition?

Changes in electron donating-accepting capacity of fluid & shale components require
quantification for effective predictive modeling!
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3.2 Parameterizing redox in hydraulically-fractured N= [NATONAL

shales = Surfactants chemically oxidize in the reservoir |TLJ|AEOkCx

Demonsirated that surfactants chemically change in the reservoir, and likely are impacted
by oxidation-reduction reactions (Marcellus Shale)
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Hakala “In situ transformation of hydraulic fracturing surfactants from well injection
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3.2 Parameterizing redox in hydravulically-fractured N

shales = Pyrite impacts surfactant reactions
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Most significant surfactant transformation occurs when pyrite is present
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With Pyrite = Fastest Reactions

With Marcellus Shale
(containing pyrite) = Faster
than Reaction Without
Mineral Fe source

Without Shale or Pyrite =
Slowest Reactions

Brandon C. McAdams, Lauren C.
Burrows, J. Alexandra Hakala “Abiotic
Transformation Kinetics of Surfactants
used in Hydraulic Fracturing Fluid.”
URTeC 2019, Denver, CO.
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3.2 Parameterizing redox in hydravulically-fractured N anonaL

ENERGY

shales - Identifying shale components that control TL [Esinowoey
electron transfer reactions

Organic matter plays a major role in eleciron transfer between fracturing fluid and shale
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/-\ Oxidation of electron donating groups

Resonance in surfacial organic layer may trigger
electron inorganic mineral oxidation through
resonance electron transport.

Bitumen may effectively catalyze
oxidation of inorganic shale minerals
by acting as an electron mediator.

U.S. DEPARTMENT OF
10/30/2020




3.2 Parameterizing redox in hydravulically-fractured N =|NATIONAL
shales — Electron transfer reactions in the reservoir TL | RSORATORT
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Final Project Period (FY21 funding):
e 3.2:
e Evaluate electron donating and accepting capacity for shales with a range of mineral and organic content.
(March 2021)
 Complete development of new inputs to improve the ability for existing models to capture key
geochemical reactions in fractured unconventional reservoirs. (March 2022)
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June 2020 major project milestone complete and additional measurements are in progress




Concluding Remarks N=|anona:

TL TECHNOLOGY
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* Produced water chemical signals can be used to identify classes of mineral reactions
occurring during different operational phases of an unconventional well

* New techniques for characterizing sources of Ba in produced water confirm a significant
geologic source, and Ba in shale can promote barite mineral scale development in
Marcellus Shale

* High fluid flow across fracture faces relates to increased barite precipitation along
primary flow pathways, and different chemical processes control barite precipitation
during injection and shut-in operational periods
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Concluding Remarks N=|rarow
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TL TECHNOLOGY
Project Insights-to-date, 2 of 2

* Oxidation-reduction reactions occur under reservoir conditions, and involve injected
fracturing fluid additives, shale organic matter, and shale minerals

* Organic matter is a significant mediator in controlling electron transfer between fluids and
shale
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Concluding Remarks N=|raroy
— : S | I et
Remaining Project Objectives

* Project End: March 2022

* Subtask 3.1
* Characterize difference between expected near-wellbore vs. extended fracture network chemical
conditions that influence fracture face mineral reactions
e Subtask 3.2:
* Evaluate electron donating and accepting capacity for shales with a range of mineral and organic content.
* Complete development of new inputs to improve the ability for existing models to capture key
geochemical reactions in fractured unconventional reservoirs.

* End Product: Qualitative and quantitative information on which geochemical reactions
affect flow pathways, for incorporation into model-based predictions.
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