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TMS Background

High potential unconventional play: “An Unproven
Unconventional Seven Billion Barrel Oil’ Resource - the

Tuscaloosa Marine Shale (1997)”7

Limited public shared knowledge.

Industry struggle to develop this formation due to

technical and economic issues.

Giood timing: availability of data and resources.
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Major Goals of TMSL Project

The overall goal of TMSL project is to form a consortium of science and industry partners
to address critical gaps in the understanding of TMS with the following objectives:

To improve drilling and completion efficiency for TMS wells by better understanding
the source of wellbore instability issues and proposing innovative cementing solutions.

To improve formation evaluation using laboratory techniques for the evaluation of f
mineralogical composition, organic content, and produced water chemistry as well as
well log and geophysical analysis.

To examine the role of geologic discontinuities on fracture growth and deformation
behavior using digital image correlation technique.

To test the application of stable CO, foam and super-hydrophobic proppants for
improving reservoir stimulation.

To test the nature of water/hydrocarbon/CO, flow in clay and organic-rich formation
and the role of kerogen and water/fluid interaction on oil recovery.

To develop better socio-economic environment for TMS by community engagement.
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Task 3: Improving TMS Dirilling Efficiency and Wellbore

Stability
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Task 3: Improving TMS Dirilling Efficiency and Wellbore
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Task 4: Improving TMS Formation Evaluation

Task 4.1: Well Log Analysis
Task 4.2: Geophysical Data Analysis

Task 4.3: Production Data Analysis

Tasks 4.4 & 4.5: Mineralogical Composition & Total Organic Content
Evaluation of TMS

Task 4.6: Ionic movement between TMS Cores and Water

Task 4.7: Sedimentologic and Sequence Stratigraphic Study of TMS and
Thermal Imaging



Task 4.1: Well Log Analysis

Characterization of Elastic Mechanical Properties of

Tuscaloosa Marine Shale From Well Logs Using the VII Model

A VTI model calibrated to core data from two TMS wells was used to
estimate the static mechanical properties of the formation

It was showed that the vertical Poisson’s ratio is less than the horizontal
Poisson’s ratio in the Tuscaloosa Marine Shale

The proposed model handles the difference between the two ratios by using
empirical correlations developed from core data

The Young’s moduli have values between 10.5 and 33 Gpa and the
horizontal modulus 1s constantly higher than the vertical one

Well A presents close values for the two Poisson’s ratios, while Well B is
characterized by a difference of 0.1 between the ratios

The 1sotropic solution underestimates the min. horiz. stress in both wells
and the VTI model converges to the isotropic solution in Well A

The 20-foot shale interval below TMS may prevent fracture growth 9



Task 4.1: Well Log Analysis

Dynamic Young's modulus (GPa)
5 S ] 8 3 3 3

[=]

Experimental Evaluation of Ultrasonic Velocities and Anisotropy in Tuscaloosa
Marine Shale Formation

The experimental evaluation of ultrasonic velocities and anisotropy was performed on 5 Tuscaloosa Marine
Shale (TMS) wells.

TMS velocity data set was compared to the established Vp-Vs relationships.

Several factors that impact the velocities were examined. The effect of mineralogy, organic content and
maturity were studied using the data obtained from XRD and Rock-Eval measurements.
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Task 4.1: Well Log Analysis

Significant results

Static and dynamic results illustrated that horizontal Young’s moduli were higher than vertical Young’s moduli for
all the samples. In addition, vertical Poisson’s ratios were lower than horizontal Poisson’s ratios for the studied

samples.

The elastic moduli measured from the dynamic method were consistently higher than those measured from the
static method. On the other hand, the dynamic Poisson’s ratios were either greater or smaller than static Poisson’s

ratios.
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Task 4.2: Geophysical Data Analysis
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Task 4.2: Geophysical Data Analysis
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Task 4.2: Geophysical Data Analysis
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Task 4.3: Production Data Analysis
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Task 4.3: Production Data Analysis
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Task 4.3: Production Data Analysis

Oil poduction rate (bbl/d)

Initial oil production rate (bbl/d)

800
700
600
500
400
300
200

100

1,000

100

10

TMS vs.

mTMS
W EFS

Il

3-year cumulative oil production (bbl/d)

il

2011Well 2012Well 2013Well 2014Well 2015Well 2011 Well 2012 Well 2013 Well 2014 Well 2015 Well
E 350
o ™S
F— 3m L
- — —FEFS 2 -
=
A — - — EFS(Wachtmeister et al. 2017) s 250 ¢ e mm =TT
E g -
E 200 + -
i g 2
(=9
S 150
Y
= T™S
© 100 (
g — — —EFS
3 50 )
i — - = EFS (Wachtmeister et al. 2017)
1 1 L 0 1 1 1 1
0 10 20 30 40 50 0 10 20 30 40

Time (years)

200

150

EFS

mTMS
W EFS

0 III|u

Time (years)

50

17



Tasks 4.4 & 4.5:

Mineralogical Composition & Total Organic Content Evaluation of TMS

* Obtained new mineralogical and geochemical data from
two wells in the TMS. These data were added to the
data from 11 wells that were compiled in BP1.

* Fitty-seven new samples ot cuttings from seven wells in
the TMS have been analyzed for their organic
geochemistry, mineralogy, and elemental compositions.

* FEvaluated relationships among production data,
fracking data, and geochemistry and mineralogy for the
TMS. Statistical analysis and contour maps have been
created to evaluate trends within these data.

18



Tasks 4.4 & 4.5:

Mineralogical Composition & Total Organic Content Evaluation of TMS
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Tasks 4.4 & 4.5:

Mineralogical Composition & Total Organic Content Evaluation of TMS
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Tasks 4.4 & 4.5:

Mineralogical Composition & Total Organic Content Evaluation of TMS
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Tasks 4.4 & 4.5:

Mineralogical Composition & Total Organic Content Evaluation of TMS
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Tasks 4.4 & 4.5:

Mineralogical Composition & Total Organic Content Evaluation of TMS

Relationship with production
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Task 4.6: lonic movement between TMS Cores
and Water

The objective of this study is the screening of the clay stabilizers such as KCI, and NaCl inorganic brines and providing the

baseline for the Tuscaloosa Marine shale treatment utilizing well-established methodologies such as capillary suction time
(CST) and roller oven (RO) tests. This work provides an innovative insight into selecting the efficient stabilizer for this clay-

rich formation, which is essential to minimize the formation damage and improve recovery mechanisms. Two wells have
been studied such as CB and BG.
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Figure 5: Capillary Suction Time Test Results for BG Well Specimen Figure 6: Roller Oven Test Results for BG Well Specimen
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Figure 7: Evaluation of Tuscaloosa Marine Shale Stability Using
Capillary Suction Time and Roller Oven Tests

The overall performance of Potassium Chloride delivered encouraging
results in stabilization of the Tuscaloosa marine shale. Based on that, the
conclusions can be drawn, such as:

L.

The evaluation showed that in the TMS studied cases, all grades of
KCI surpassed NaCl brines based on CST and RO tests

Escalating the ionic strength of the drilling fluid cannot be assumed to
correspond to better shale stabilization results of the TMS specimens.
The highest destabilization results were established on the depth
12172’ from CB well, where the concentration of the Illite & Mica is
significantly dominating compared to other identified clay groups, and
nearly 30% higher compared to 12107’ and 12132".

. In some cases, when the total clay in TMS exceeds 50%, the low

grade of NaCl brine follows the freshwater pattern providing almost
no contribution to the shale inhibition.
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Task 4.7: Sedimentologic and Sequence
Stratigraphic Study of TMS and Thermal Imaging
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Figure 1. A portion of the log form of Well Beech Grove 68H-1, showing the
key observations and preliminary interpretations of depositional processes,

environments, and sequence stratigraphy. This is a proto type of a core-
based template that can be expanded with data from other researchers.
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Figure 2. Core photos (left
panel) and corresponding
scratch curve (red) and
three order of stratigraphic
hierarchy based on
thickness and lithology from
Well Lane 64-1. The
scratch curve and data
from core logs can be used
to qualitatively and
quantitatively analyze such
hierarchy.

Lamina - lamina set - bed - bed set - facies
association - depositional systems - sequences



Task 5: Development of Digital Image Correlation
System and Techniques

Cameras

testing

LED §

Two 12 MP digital cameras
Blue LED lights

Instron 5982 (100 KN load
cell)

Images processed using
DIC software

Displacement and strain
information  over  entire
specimen surface
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Development of Fracture Process Fully developed FPZ for various
Zone (FPZ) during testing crack orientations

Displacement fields obtained by the DIC were used to measure fracture
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FPZ development was tracked and measured. Average FPZ size for

Berea Sandstone is 4.9+1.1 mm and for Mancos Shale average FPZ

size is 2.320.9 mm

Effect of different notch orientations with respect to bedding on fracture
toughness was investigated 29



Brazilian Disc Test
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Task 6: Investigation of CO, Foam Generation with
Nanoparticles

| Data recording
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Task 6: Investigation of CO, Foam Generation with
Nanoparticles

» Rheology of Nanosilica-Surfactant-stabilized CO, foam
« Effect of surfactant type
» Effect of surfactant concentration
« Effect of temperature
» Rheology of Nanosilica-Surfactant-Polymer-stabilized CO, foam
« Effect of HEC polymer concentration

« Effect of temperature
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Nanosilica-Surfactant-Polymer-stabilized CO, Foam
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Nanosilica-Surfactant-Stabilized CO, Foam
Stability at 43°C

12h  24h  48h
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Task 7: Shale Hydrocarbon Phase Solubility

BP 2: 2019-2020
HC Extraction Study

Hydrocarbon Extraction (HCX) Lab

1. SFX SC Fluid Dual Extraction System
» D-series ISCO pumps

SFX ™ 220 Controller

Extractor Pressure Chamber

Restrictor
Effluent Collection Vials

2. Test Conditions
« T=80° C
* Pc=34 MPa
* 10 ml cartridges
» 2g oil shale sample powder
* scCO, + modifiers.

- e




TMSL TASK 7
BP 2 Extraction Results

Total HCeep yent V8 TOCsghaLe extrAcT Using GC measurements on
effluent and EL mass spec
1400000000.00000 measurements on the solid
[ residue, we confirmed that

1200000000,00000 b 4 . ~ the HC fluid extracted during

testing is proportional to the
TOC (wt%) extracted from

B N E-agle Ford McClanahan Core the EE shar
e EF shale.

GU1-C4H2 (7wt% TOC)

800000000.00000

N.B.: Analysis of GC results
O — on TOC extraction to look at
FoRaDo00. oo \V/ sc¢CO; only extract speciation for
scCO; 5% oosolvenls different co-solvents has
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Task 8: Evaluation of the Major Needs/Socioeconomics for
the development of TMS Region

Subtask 8.3. Evaluation of workforce training programs in Louisiana and Mississippi for the oil
and gas industry

- The inventory and interviews of existing workforce training programs in the TMS region found that by
reaching out to adjacent communities, the region has a significant workforce training capacity.

- Benchmarking against more developed shale regions found the broader TMS region had competitive
training programs following similar curriculums.

- The skills competency model and skills transferability matrix identified construction as a closely aligned
industry.

- Improving local hiring opportunities will be challenging, and workforce training is important. However,
improving K-12 education and soft skills will be even more important as those are the foundations of
workforce development.

Subtask 8.4. Business assistance and diversification programs in Louisiana and Mississippi for
the oil and gas industry

- The TMS region has many business assistance programs, but limited technical assistance for the oil and
gas industry when benchmarked to more developed shale regions.

- Communicating with executives of economic development organizations in established shale regions
could be beneficial for the TMS when production increases.
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Future Works in BP3

Task 3, Improving TMS Drilling and Wellbore Stability

»  Simulation of Mud Displacement by Cement in Irregular Enlarged Wellbores
»  Casing/Cement Bonding Simulation

Task 4, Improving TMS Formation Evaluation

4.1 Characterize TMS natural fractures using image logs and sonic logs.
4.2 -- The permeability of TMS via laboratory analyses will be conducted

-- Develop a machine learning method to estimate TOC of the TMS from seismic and seismic associated datasets.

4.4 &4.5 -- Complete solvent extractions to remove free oil from TMS cuttings samples and re-analyze the treated
samples using Rock Eval pyrolysis at UL Lafayette.
-- Conduct lab experiments to better understand the interactions of fracking fluids with the TMS substrate
under high T and P conditions.

4.6 -- Imbibition studies will be focused and expanded on various facies of several TMS wells

-- screening of various salts such as formate-based fluids for the stability of the TMS.
4.7 Thermographic investigation on approximately 20 TMS core samples to analyze the thermal conductivity of
various components in TMS

Task 5, Development of Digital Image Correlation (DIC) System and Techniques

» Investigate creep behavior of TMS using digital image correlation technique.

» Using the high-speed camera to better capture the fracture initiation during Brazilian testing.

Task 6, Investigation of CO2 Foam Generation with Nanoparticles

» Design and build a coreflooding system to estimate the nanoparticle-stabilized CO, foam leak-off rate.

» Measurement of Fracture Permeability in TMS Cores 20



Future Works in BP3

Task 7, Shale Hydrocarbon Phase Solubility

» characterization of supercritical fluid extractions (SFE) tests using dynamic high PT reactor experiments on
scCO, with co-solvents propanol and tetrahydrofuran (THF).

» The initiation of hydrocarbon microfluidics extraction using scCO2 with PropOH + THF modifiers to determine
their relation to HC breakdown and kerogen stability.

» The analysis & summary of hydrocarbon phase stability test results & properties gained from testing: potential
applications to in-situ fossil fuel yield during deep reservoir fracking.

Task 8, Evaluation of the major needs/socioeconomics for the development of TMS region

» Organize a multi-disciplinary training event
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