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Program Overview

– Funding: 

Sponsoring Office: Office of Science, SC-1, DOE

Award Number: DE-SC0019665

– Project Performance Dates: 

04/06/2019 – 04/05/2021

– Project Participants:

Advanced Geophysical Technology, Inc.

University of Houston

‒ Overall Project Objectives

Reconstruction of low-frequency seismic data based on the progressive deep 

transfer learning workflow and develop a commercial product for delivering 

large-scale FWI services of the highest level of quality in the industry.
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Technology Background 

– Seismic Imaging & FWI for Subsurface Exploration

Seismic imaging

‒ most important E&P technology

‒ a difficult inverse problem

‒ extensive manual interventions

‒ turnaround time → months

Velocity model building (VMB)

‒ most important and complex 

procedure in seismic imaging

‒ Tomography → low resolution, 

no geological information

FWI

‒ most advanced VMB

‒ automatic → reduced turnaround

‒ fails if low frequency data is 

unavailable

Seismic Data Processing Workflow

Typically acquired seismic data do not 

contain frequency components below ~5 Hz 
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Technology Background 

– Important Role of Low Frequency Data in FWI

True velocity model

FWI result (full bandwidth data)

FWI result (bandlimited data)

Strong artifacts

Full bandwidth data

5 Hz
Bandlimited data

5 Hz

FWI is a nonlinear inverse problem

Higher frequency 

→ more nonlinear

→ local minimum (cycle-skipping)

→ artifacts and wrong velocity model
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Existing algorithmic approaches

❑ Scattering-angle-based filtering method

hard to control, highly nonlinear 

❑ Extended model & traveltime shift methods

discontinuous wavenumber spectrum

❑ Synthesized low frequency  methods

sensitive to noise and other uncertainties

❑ Phase unwrapping methods

difficult for 2D, nearly impossible for 3D

❑ Beat-Tone method

tends to amplify noise and scattering energy

BP’s Hardware approach – Wolfspar Low Frequency source
❑ 1.4 Hz – 8 Hz nodal source; 1 Hz source → 1000 times more difficult than 10 Hz → expensive

❑ Discovery of extra billion barrel in Gulf of Mexico;

Our approach – Self-supervised learning for low frequency seismic data prediction

Technology Background – Existing Methods

https://finance.yahoo.com/news/focus-billion-barrel-bonanza-bp-

goes-global-seismic-071110492--finance.html

fM fNf1

Our goal: 

use (fM … fN)  → predict (f1 … fM-1)
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Technical Advantages & Challenges

Advantages

❑ Able to reconstruct any frequency components → continuous k-spectrum

❑ Self-supervised learning → no manual labeling procedure

❑ Physics module integrated with Deep Learning→ No a priori subsurface info required

❑ Progressive Transfer Learning → iterative learning (only one training set required)

❑ Physics-based pretext task → robust, automatic DL launch, accelerated convergence

❑ Fully automatic→ turnaround time ↓

Challenges
1) model generalization; 2) gaps between synthetic & field; 2) multiple FWIs required

Frequency Frequency Frequency

Conventional methods

Discontinuous k-spectrum
This method

Continuous k-spectrum
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Technical Approach

Initial training 

velocity model

Generating training data

(LF & HF)

Training Deep 

Learning network

Measured data (HF)

Reconstructed 

data (LF)

Velocity model (LR)

Cycle-

skipping

?

Final product

Yes

No

LF-FWI HF-FWI

Velocity model 

(HR)

Updated training 

velocity model

Workflow of Progressive Transfer Learning

Structure of DNN for low frequency 

components prediction

❑ Naïve application of DNN achieved 

limited success due to lack of large 

training samples

❑ Progressive Transfer Learning (PTL) 

iteratively retrieves subsurface 

information → adaptive to new datasets

❑ Further extend this approach → fully 

automatic self-supervised learning
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The aim of the work plan is to develop a highly customizable and robust FWI workflow for 

different data acquired from complicated subsurface structures, providing significant uplift the 

imaging quality for our customers.

Task 1: Implement and fine-tune the network structures and parameters to be adaptive to different seismic 
acquisition methods and receiver configurations. Improve the prediction accuracy of the low-frequency data by 
exploiting various regularization approaches imposed on the objective function of training to reduce data 
distortion due to nonlinearity. 

Task 2: Customize and build a progressive transfer learning workflow for using FWI to illustrate salt structures. 
Particularly, the workflow aims at improving subsalt imaging for data of wide azimuth and long offset. 

Task 3: Customize and build a progressive transfer learning workflow for using FWI to obtain high-resolution 
near-surface velocity models. Investigate and implement an effective data processing strategy to deliver a full-
scale FWI solution for removing the near-surface velocity anomalies. 

Task 4: Test and demonstrate the performance of the prototype product. Collaborating with our potential 
customers, calibrate and verify system parameters in the field environment. Conduct tests with field data and fix 
any usability issues based on customers' feedbacks. 

Work Plan
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End-to-end Supervised Learning

Step 1 – Training velocity model selection
True model

Training model

HF - fM HF – fM+1 HF - fN

LF – f1 LF – f2 LF – fM-1

Step 2 – Training data generation
Training model

Step 3 – Network architecture design Step 4 – Network training & testing

Deep Neural Network

HF - fM HF – fM+1 HF - fN

LF – f1 LF – f2 LF – fM-1
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End-to-end Supervised Learning 

– Successful Example

FWI Initial model DL predicted result

Reference solution HF only result

Assuming only ≥ 10 Hz acquired

3 Hz, 5 Hz, 7 Hz data predicted

a)

b)

c)

d)
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End-to-end Supervised Learning 

– Lesson Learned

True model FWI initial model

Training model FWI using predicted LF

Assuming only ≥ 10 Hz acquired

a)

b)

c)

d)

1429

2269

3110

3950

4790

True 3 Hz data & predicted 3 Hz data

Failed low frequency prediction
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Non-representative Training Data 

Our solution
A better strategy – Progressive Transfer Learning

− Parallel training converted to iterative sequential training → single training model

− Training model no longer fixed but evolving and continuously improving

− Geological & geophysical information incorporated in training model

− DL-based module seamlessly integrated with physics-based inversion

Existing Issue & Challenge
Only a single random training velocity model selected → network generalization?

‒ Non-representative training data, learning process might be severely biased

Intuitive solution
A random velocity model generator →

− Impossible to exhaustively capture global geological & geophysical features

− Computationally expensive → unmanageable & impractical
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Progressive Transfer Learning Method

❑Training data → Measured data

❑Training velocity model → Final velocity model

Initial training 

velocity model

Training dataset

DNN Training

DonePredicted LF Data

Converge?

Yes

No

LF & HF 

FWI

Updated training 

velocity model
Forward modelingRandom velocity 

model selection

Final FWI result

1st LF prediction

2nd LF prediction



14

Progressive Transfer Learning Results

1st learning iteration

FWI using 3rd iteration predicted LF3rd learning iteration

Training model
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Progressive Transfer Learning Results

FWI using 1st predicted LF FWI using 3rd predicted LF

Reference solution FWI using HF only

a)

b)

c)

d)
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Field Data Testing

❑ Data below 6 Hz very noisy

❑ FWI result was sent back to the 

network as new training velocity 

model

❑ 1 Hz to 7 Hz data were predicted 

by network from 10 Hz to 15 Hz 

data

1 Hz data prediction

3 Hz data prediction

7 Hz data prediction

x  – Predicted data

• – Field data
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Field Data Testing

FWI using field data 8 Hz – 18 Hz

FWI using predicted 1 Hz – 7 Hz, followed by field data 8 Hz – 18 Hz
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PTL → Fully Automatic Self-supervised Learning

Downstream task

Initial training 

velocity model Training dataset

DNN Training

DonePredicted LF Data

Converge?

Yes

No

LF & HF 

FWI

Updated training 

velocity model

PLF velocity 

model building

Forward 

modeling

Random velocity 

model selection

BWE velocity 

model building

Pretext task

Random training velocity model →

slow convergence or divergence

Two automatic initial training model building:

1. Pseudo-Low-Frequency (PLF)

2. Bandwidth Extension (BWE)

Idea: approximately estimate LF components → LF FWI, followed by HF FWI → initial 

training velocity model
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Pseudo-Low-Frequency (PLF Method)

Receiver index

6 Hz

7 Hz

PLF 

1 Hz

𝚽𝑷𝑳𝑭 𝑴𝑷𝒆𝒖𝒅𝒐
1 𝐻𝑧 = 𝚽 𝑴7 𝐻𝑧 −𝚽 𝑴6 𝐻𝑧
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PLF Method Performance

Red:  ML-predicted LF Blue: True LF

a) LF prediction after pretext task; 

b) LF prediction after 3 iterations of downstream task; 

c) FWI result using HF data only (>10 Hz);

d) FWI result using predicted LF data, along with HF data (>10 Hz).
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Bandwidth Extension (BWE Method)

Velocity Trace Decon Spectrum

Sparse Earth → many data, only 5 x 2 unknowns, over-determined → solvable with 

trace-by-trace approach

Extrapolate

d spectrum

𝑎𝑟𝑔𝑚𝑖𝑛 𝐫 − 𝐀𝐜 2
2 + 𝜆 𝐜 1,

𝐴𝑚,𝑛 = 𝑒𝑥𝑝 𝑗
2𝜋

𝑁
𝑚𝑛 ,

0 ≤ 𝑚 ≤ 𝑀 − 1,
0 ≤ 𝑛 ≤ 𝑁 − 1

𝑅′ 𝑓 = ෍

𝑛=1

𝑘

𝑐𝑛ex𝑝(𝑗𝑎𝑛𝑓 + 𝑏𝑛)

k - unknown number of reflectors

𝑟′ 𝑚 = ෍

𝑛=0

𝑁−1

𝑐(𝑛)exp 𝑗
2𝜋

𝑁
𝑚𝑛 ,

0 ≤ 𝑚 ≤ 𝑀 − 1
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BWE Method Performance

Red:  predicted LF

Blue: True LF

a) BWE-predicted LF ;

b) LF prediction after 1 iteration of downstream task; 

c) FWI result using HF data only (>10 Hz);

d) FWI result using predicted LF data, along with HF data (>10 Hz).

a)

b) d)

c)
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Accomplishments to Date

• Developed a dual-data-feed deep learning network for prediction of 
absent low frequency components in acquired seismic data

• Proposed a progressive transfer learning method to integrate a physics-
based inversion module with the deep learning module to gradually 
retrieve subsurface information for adaptive learning. Its robustness has 
been demonstrated.

• Based on the progressive transfer learning, we developed a self-
supervised learning approach for low frequency prediction. The learning 
process is automatically launched by two physics-based algorithms for 
robust initial training velocity model building – PLF method and BWE 
method.

• Investigated an unsupervised learning for seismic data denoising to close 
the gap between synthetic data and field data.
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Plan for Future Development and Testing

• Further optimize DNN network to enhance training efficiency and 
prediction accuracy

• Testing acquisition dependent (e.g., offset dependent) training workflow 
to improve network adaptiveness

• Implement self-supervised denoising network and other preprocessing 
procedures to close the gap between synthetic data and field data

• Testing trace-by-trace network to pave the way for large scale production

• Further improve the efficiency of pretext task (BWE method) through GPU 
implementation or unsupervised learning algorithms

• Develop improved Progressive Transfer Learning workflow (e.g., truncated 
& augmented FWI approach) to accelerate network training

• More extensive field data testing with our industry collaborators, 
production of this technology
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Publication & Patent Application

• Hu, W., Jin, Y., Wu, X. and Chen, J., 2019. A progressive deep transfer learning approach to 

cycle-skipping mitigation in FWI. In SEG Technical Program Expanded Abstracts 2019 (pp. 2348-

2352). Society of Exploration Geophysicists.

• Jin, Y., Hu, W., Wu, X. and Chen, J., 2018. Learn low wavenumber information in FWI via deep 

inception based convolutional networks. In SEG Technical Program Expanded Abstracts 

2018 (pp. 2091-2095). Society of Exploration Geophysicists.

• The application “METHODS AND SYSTEMS FOR OBTAINING RECONSTRUCTED LOW-

FREQUENCY SEISMIC DATA FOR DETERMINING A SUBSURFACE FEATURE” was filed in the 

USPTO on July 8, 2020 with the assigned Application No. 16/923,525.
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Organization Chart

• Advanced Geophysical Technology, Inc. 

(Geophysics & machine learning method application)

Wenyi Hu – Research Geophysicist (PI)

Xu Liu – Software engineer

Liangong Zhao – Geophysicist 

• University of Houston

(Machine learning method development)

Jiefu Chen – Assistant Professor

Xuqing Wu – Assistant Professor

Yuchen Jin – Ph.D. Student

Yuan Zi – Ph.D. Student
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Gantt Chart

Task 1: Optimize DNN network structure and training workflow

Subtask 1.a: Seismic data preprocessing for low-frequency data prediction

Subtask 1.b: Optimize the design of network structures to improve prediction performance  

Subtask 1.c: Improve the network performance by enforcing smooth prediction 

Task 2: Customize progressive transfer learning workflow for FWI to enhance subsalt imaging  

Task 3: Customize progressive transfer learning workflow for FWI to enhance near-surface 
velocity model building

Task 4: Validate prototype performance and usability via system integration and field test  


