Enhance Full-waveform Inversion With Machine Learned Low-frequency Signals

Project Number: DE-SC0019665

Wenyi Hu Advanced Geophysical Technology, Inc.

U.S. Department of Energy National Energy Technology Laboratory **Oil & Natural Gas 2020 Integrated Review Webinar**

Program Overview

– Funding:

Sponsoring Office: Office of Science, SC-1, DOE Award Number: DE-SC0019665

Project Performance Dates: 04/06/2019 – 04/05/2021

- Project Participants:

Advanced Geophysical Technology, Inc. University of Houston

Overall Project Objectives

Reconstruction of low-frequency seismic data based on the progressive deep transfer learning workflow and develop a commercial product for delivering large-scale FWI services of the highest level of quality in the industry.

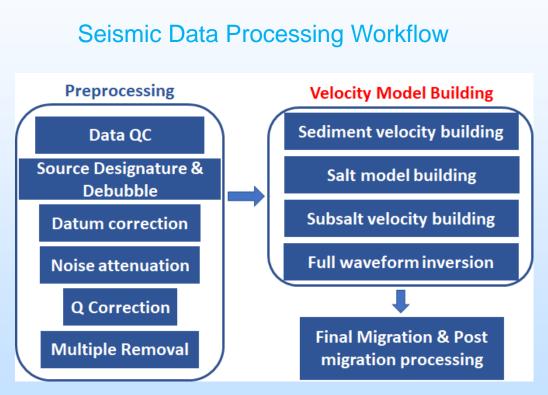
Technology Background – Seismic Imaging & FWI for Subsurface Exploration

Seismic imaging

- most important E&P technology
- a difficult inverse problem
- extensive manual interventions
- turnaround time \rightarrow months
- Velocity model building (VMB)
- most important and complex procedure in seismic imaging
- Tomography → low resolution, no geological information

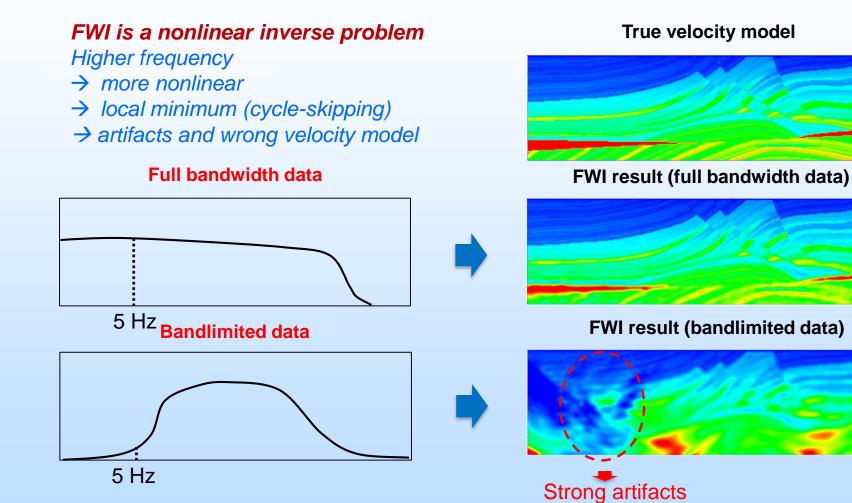
FWI

- most advanced VMB
- automatic \rightarrow reduced turnaround
- fails if low frequency data is unavailable



Typically acquired seismic data do not contain frequency components below ~5 Hz

Technology Background – Important Role of Low Frequency Data in FWI



Technology Background – Existing Methods

Existing algorithmic approaches

- Scattering-angle-based filtering method hard to control, highly nonlinear
- Extended model & traveltime shift methods discontinuous wavenumber spectrum
- Synthesized low frequency methods sensitive to noise and other uncertainties
- Phase unwrapping methods difficult for 2D, nearly impossible for 3D
- Beat-Tone method

tends to amplify noise and scattering energy

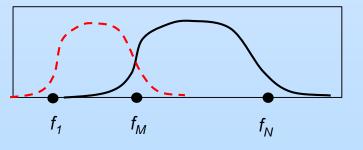
https://finance.yahoo.com/news/focus-billion-barrel-bonanza-bp-goes-global-seismic-071110492--finance.html

BP's Hardware approach – Wolfspar Low Frequency source

- □ 1.4 Hz 8 Hz nodal source; 1 Hz source \rightarrow 1000 times more difficult than 10 Hz \rightarrow expensive
- Discovery of extra billion barrel in Gulf of Mexico;

Our approach – Self-supervised learning for low frequency seismic data prediction

Our goal: use $(f_M \dots f_N) \rightarrow \text{predict} (f_1 \dots f_{M-1})$



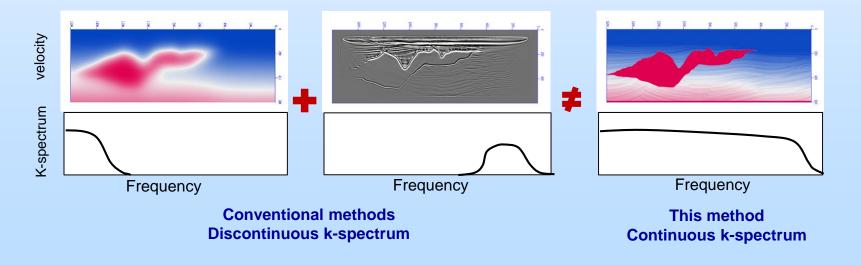
Technical Advantages & Challenges

Advantages

- \Box Able to reconstruct any frequency components \rightarrow continuous k-spectrum
- □ Self-supervised learning \rightarrow no manual labeling procedure
- □ Physics module integrated with Deep Learning \rightarrow No *a priori* subsurface info required
- $\Box Progressive Transfer Learning \rightarrow iterative learning (only one training set required)$
- \Box Physics-based pretext task \rightarrow robust, automatic DL launch, accelerated convergence
- □ Fully automatic \rightarrow turnaround time \downarrow

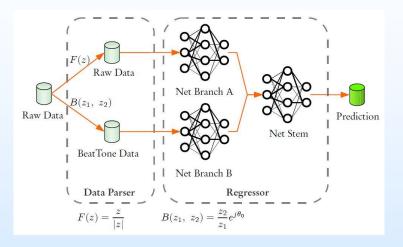
Challenges

1) model generalization; 2) gaps between synthetic & field; 2) multiple FWIs required



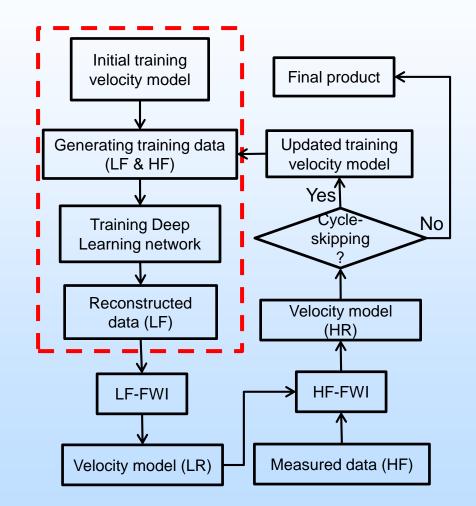
6

Technical Approach



Structure of DNN for low frequency components prediction

- Naïve application of DNN achieved limited success due to lack of large training samples
- □ Progressive Transfer Learning (PTL) iteratively retrieves subsurface information → adaptive to new datasets
- □ Further extend this approach → fully automatic self-supervised learning



Workflow of Progressive Transfer Learning 7

Work Plan

The aim of the work plan is to develop a highly customizable and robust FWI workflow for different data acquired from complicated subsurface structures, providing significant uplift the imaging quality for our customers.

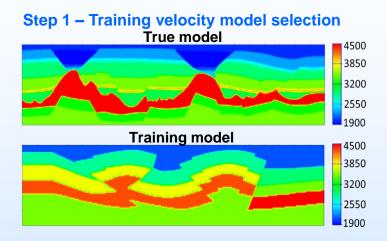
Task 1: Implement and fine-tune the network structures and parameters to be adaptive to different seismic acquisition methods and receiver configurations. Improve the prediction accuracy of the low-frequency data by exploiting various regularization approaches imposed on the objective function of training to reduce data distortion due to nonlinearity.

Task 2: Customize and build a progressive transfer learning workflow for using FWI to illustrate salt structures. Particularly, the workflow aims at improving subsalt imaging for data of wide azimuth and long offset.

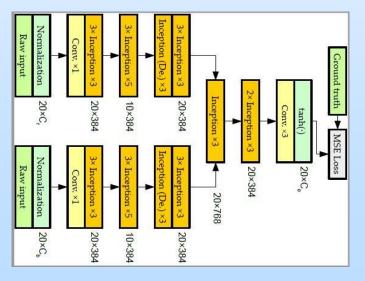
Task 3: Customize and build a progressive transfer learning workflow for using FWI to obtain high-resolution near-surface velocity models. Investigate and implement an effective data processing strategy to deliver a full-scale FWI solution for removing the near-surface velocity anomalies.

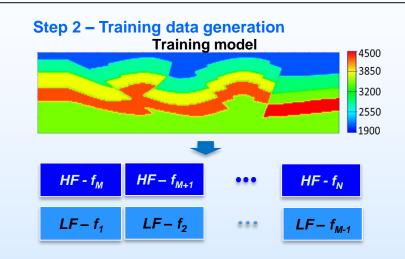
Task 4: Test and demonstrate the performance of the prototype product. Collaborating with our potential customers, calibrate and verify system parameters in the field environment. Conduct tests with field data and fix any usability issues based on customers' feedbacks.

End-to-end Supervised Learning

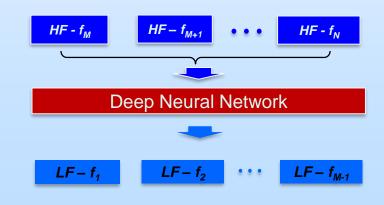


Step 3 – Network architecture design





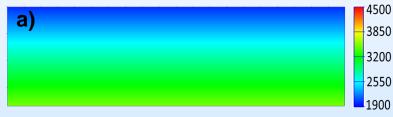
Step 4 – Network training & testing



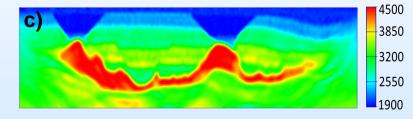
End-to-end Supervised Learning - Successful Example

Assuming only \geq 10 Hz acquired 3 Hz, 5 Hz, 7 Hz data predicted

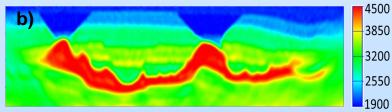
FWI Initial model



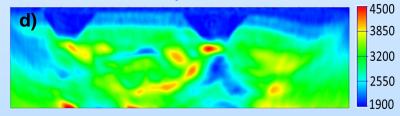
DL predicted result



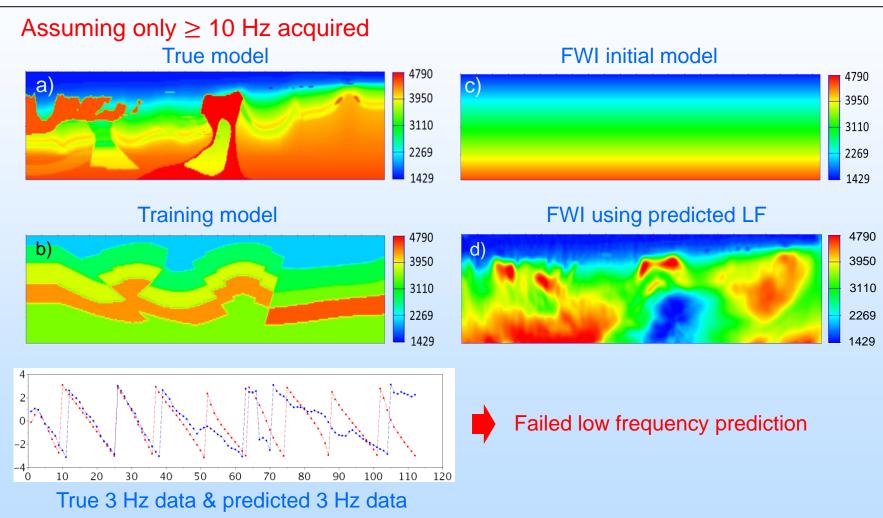
Reference solution



HF only result



End-to-end Supervised Learning – Lesson Learned



Non-representative Training Data

Existing Issue & Challenge

Only a single random training velocity model selected \rightarrow network generalization?

- Non-representative training data, learning process might be severely biased

Intuitive solution

A random velocity model generator \rightarrow

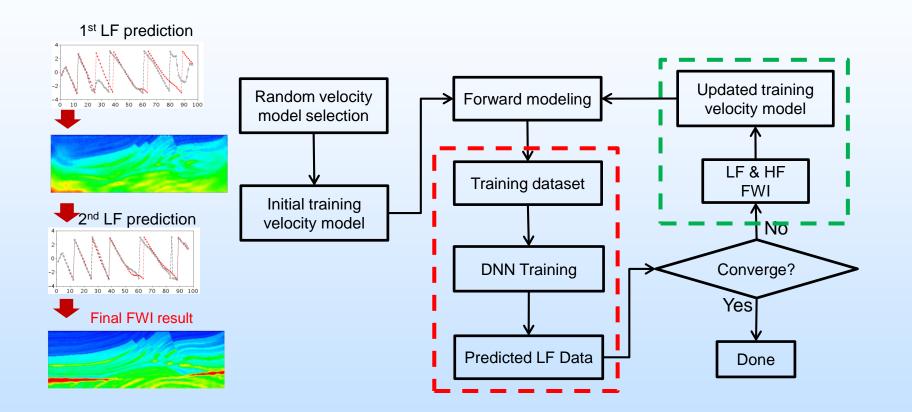
- Impossible to exhaustively capture global geological & geophysical features
- Computationally expensive \rightarrow unmanageable & impractical

Our solution

A better strategy – Progressive Transfer Learning

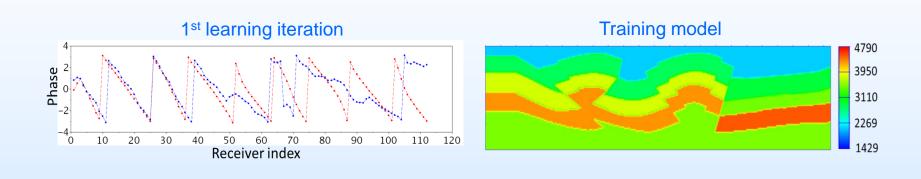
- Parallel training converted to iterative sequential training \rightarrow single training model
- Training model no longer fixed but evolving and continuously improving
- Geological & geophysical information incorporated in training model
- DL-based module seamlessly integrated with physics-based inversion

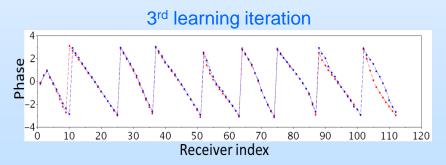
Progressive Transfer Learning Method



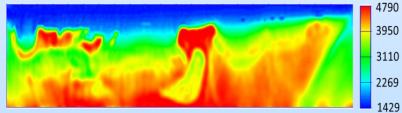
□Training data \rightarrow Measured data □Training velocity model \rightarrow Final velocity model

Progressive Transfer Learning Results



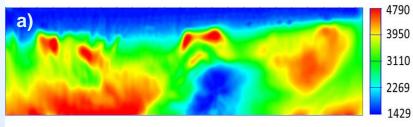


FWI using 3rd iteration predicted LF

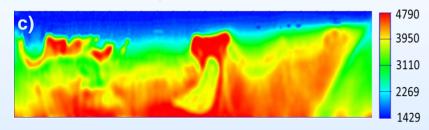


Progressive Transfer Learning Results

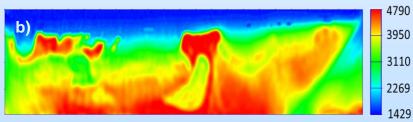
FWI using 1st predicted LF



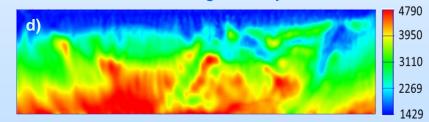
FWI using 3rd predicted LF



Reference solution



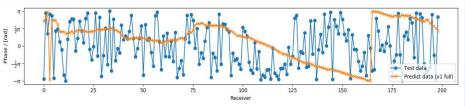
FWI using HF only



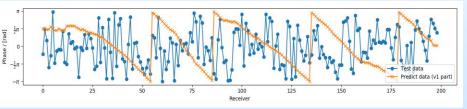
Field Data Testing

- Data below 6 Hz very noisy
- FWI result was sent back to the network as new training velocity model
- I Hz to 7 Hz data were predicted by network from 10 Hz to 15 Hz data

1 Hz data prediction

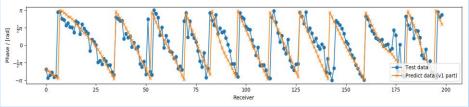


3 Hz data prediction



7 Hz data prediction

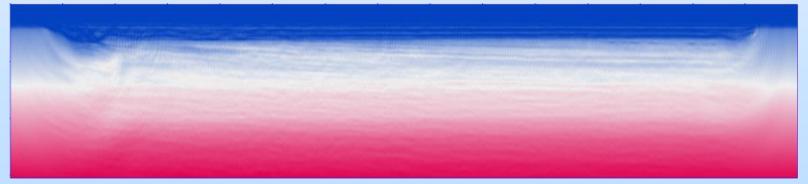
- Field data



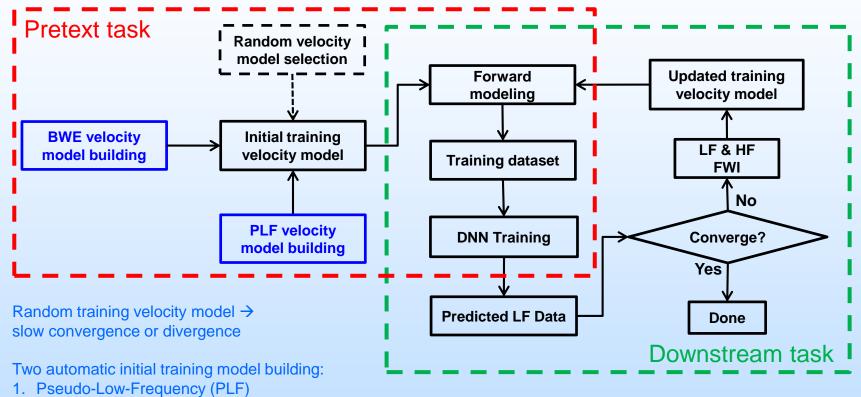
Field Data Testing

FWI using field data 8 Hz – 18 Hz

FWI using predicted 1 Hz - 7 Hz, followed by field data 8 Hz - 18 Hz



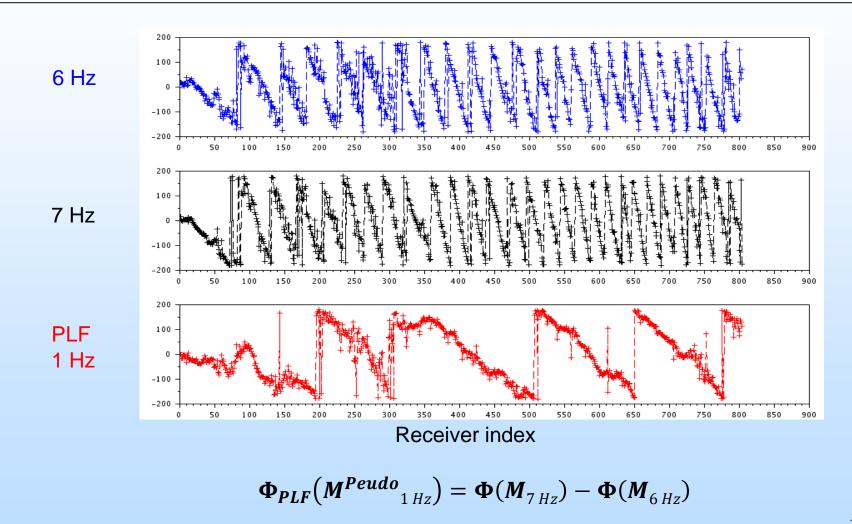
PTL → Fully Automatic Self-supervised Learning



2. Bandwidth Extension (BWE)

Idea: approximately estimate LF components \rightarrow LF FWI, followed by HF FWI \rightarrow initial training velocity model

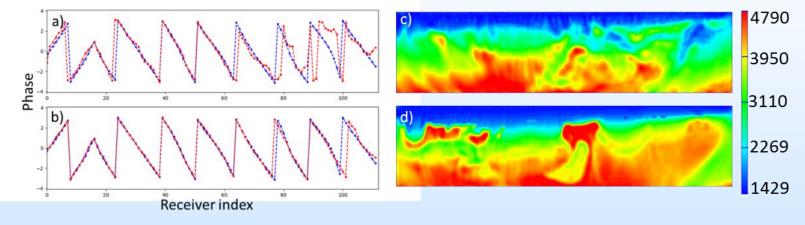
Pseudo-Low-Frequency (PLF Method)



19

PLF Method Performance

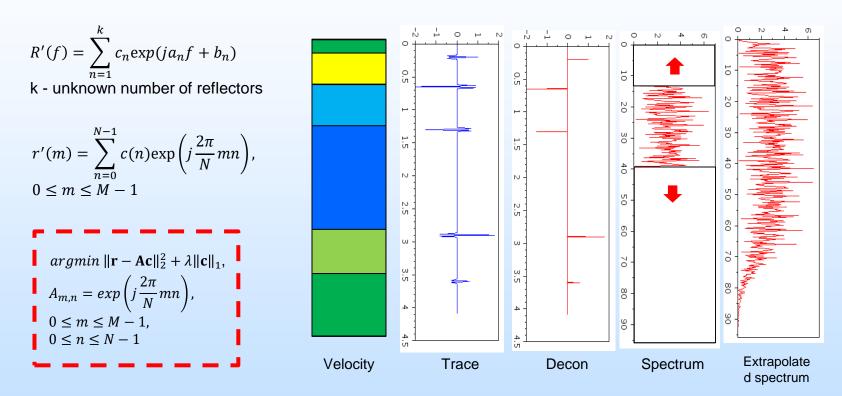
LF Prediction and FWI Results



Red: ML-predicted LF

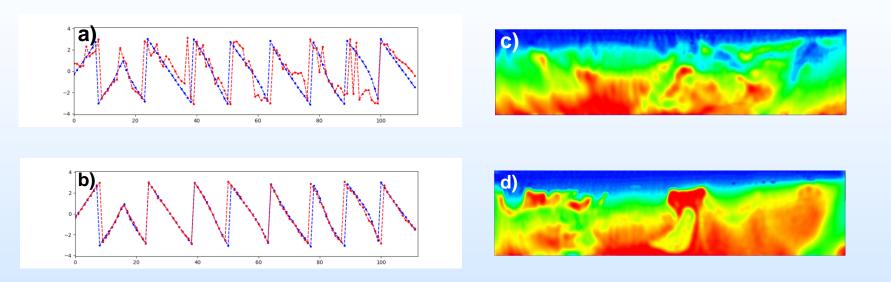
- a) LF prediction after pretext task;
- b) LF prediction after 3 iterations of downstream task;
- c) FWI result using HF data only (>10 Hz);
- d) FWI result using predicted LF data, along with HF data (>10 Hz).

Bandwidth Extension (BWE Method)



Sparse Earth \rightarrow many data, only 5 x 2 unknowns, over-determined \rightarrow solvable with trace-by-trace approach

BWE Method Performance



Red: predicted LF Blue: True LF

- a) BWE-predicted LF;
- b) LF prediction after 1 iteration of downstream task;
- c) FWI result using HF data only (>10 Hz);
- d) FWI result using predicted LF data, along with HF data (>10 Hz).

Accomplishments to Date

- Developed a dual-data-feed deep learning network for prediction of absent low frequency components in acquired seismic data
- Proposed a progressive transfer learning method to integrate a physicsbased inversion module with the deep learning module to gradually retrieve subsurface information for adaptive learning. Its robustness has been demonstrated.
- Based on the progressive transfer learning, we developed a selfsupervised learning approach for low frequency prediction. The learning process is automatically launched by two physics-based algorithms for robust initial training velocity model building – PLF method and BWE method.
- Investigated an unsupervised learning for seismic data denoising to close the gap between synthetic data and field data.

Plan for Future Development and Testing

- Further optimize DNN network to enhance training efficiency and prediction accuracy
- Testing acquisition dependent (e.g., offset dependent) training workflow to improve network adaptiveness
- Implement self-supervised denoising network and other preprocessing procedures to close the gap between synthetic data and field data
- Testing trace-by-trace network to pave the way for large scale production
- Further improve the efficiency of pretext task (BWE method) through GPU implementation or unsupervised learning algorithms
- Develop improved Progressive Transfer Learning workflow (e.g., truncated & augmented FWI approach) to accelerate network training
- More extensive field data testing with our industry collaborators, production of this technology

Publication & Patent Application

- Hu, W., Jin, Y., Wu, X. and Chen, J., 2019. A progressive deep transfer learning approach to cycle-skipping mitigation in FWI. In *SEG Technical Program Expanded Abstracts 2019* (pp. 2348-2352). Society of Exploration Geophysicists.
- Jin, Y., Hu, W., Wu, X. and Chen, J., 2018. Learn low wavenumber information in FWI via deep inception based convolutional networks. In *SEG Technical Program Expanded Abstracts 2018* (pp. 2091-2095). Society of Exploration Geophysicists.
- The application "METHODS AND SYSTEMS FOR OBTAINING RECONSTRUCTED LOW-FREQUENCY SEISMIC DATA FOR DETERMINING A SUBSURFACE FEATURE" was filed in the USPTO on July 8, 2020 with the assigned Application No. 16/923,525.

Organization Chart

• Advanced Geophysical Technology, Inc.

(Geophysics & machine learning method application)

Wenyi Hu – Research Geophysicist (PI)

Xu Liu – Software engineer

Liangong Zhao – Geophysicist

• University of Houston

(Machine learning method development) Jiefu Chen – Assistant Professor Xuqing Wu – Assistant Professor Yuchen Jin – Ph.D. Student Yuan Zi – Ph.D. Student

Gantt Chart

	Q1, Y1	Q2, Y1	Q3, Y1	Q4, Y1	Q1, Y2	Q2, Y2	Q3, Y2	Q4, Y2
Task 1.a	AGT	AGT	AGT	AGT				
Task 1.b			UH	UH				
Task 1.c	UH	UH						
Task 2			AGT,UH	AGT,UH	AGT,UH	AGT,UH		
Task 3				AGT,UH	AGT,UH	AGT,UH	AGT,UH	
Task 4					AGT,UH	AGT,UH	AGT,UH	AGT

Task 1: Optimize DNN network structure and training workflow

Subtask 1.a: Seismic data preprocessing for low-frequency data prediction
Subtask 1.b: Optimize the design of network structures to improve prediction performance
Subtask 1.c: Improve the network performance by enforcing smooth prediction

Task 2: Customize progressive transfer learning workflow for FWI to enhance subsalt imaging **Task 3:** Customize progressive transfer learning workflow for FWI to enhance near-surface velocity model building

Task 4: Validate prototype performance and usability via system integration and field test