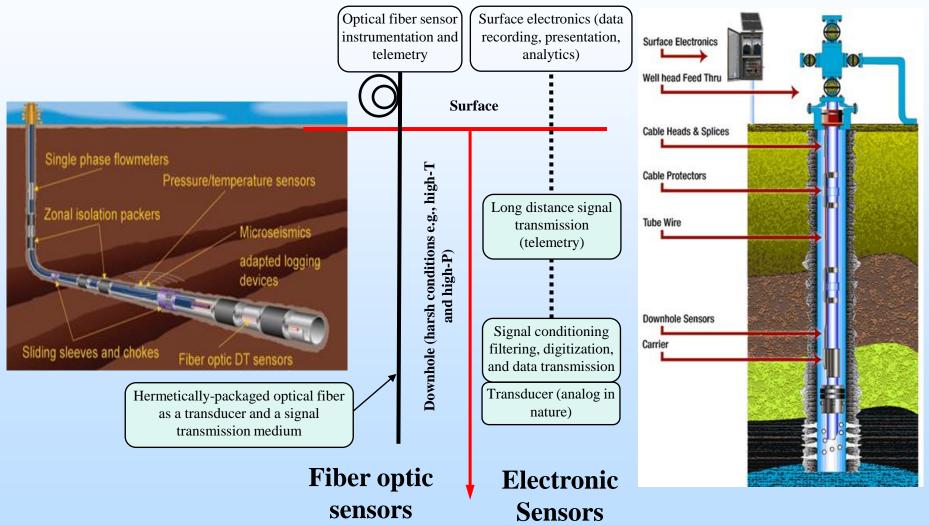
#### All-digital Sensor System for Distributed Downhole Pressure Monitoring in Unconventional Fields DE-FE0031781

Hai Xiao Clemson University

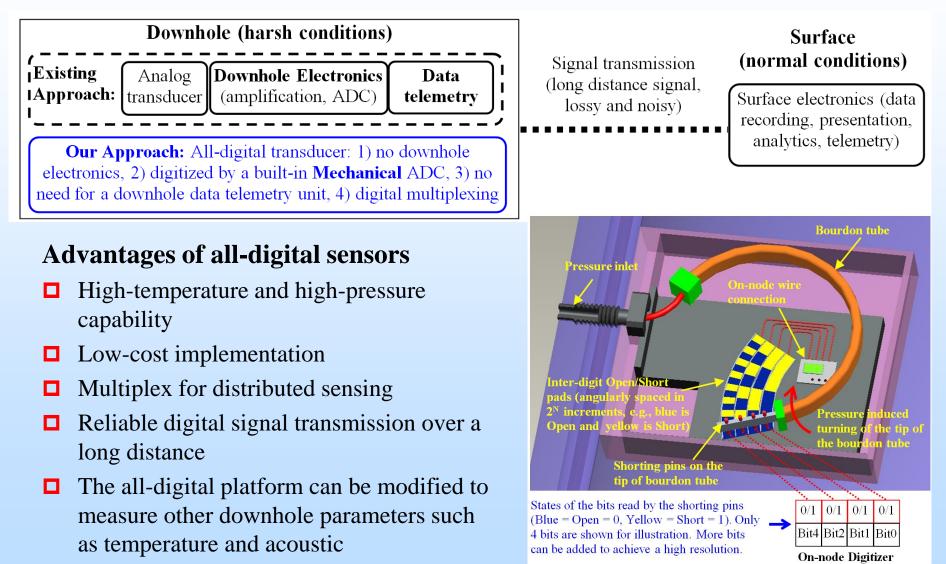
U.S. Department of Energy National Energy Technology Laboratory **Oil & Natural Gas 2020 Integrated Review Webinar** 

# **Program Overview**

- DE-FOA-0001990
  - Area of Interest 1A Improving Ultimate Recovery from Unconventional Oil and Gas Resources
- Total project budget: \$1,750,000
  - DOE: \$1,500,000
  - Costshare \$250,000
- 3 Year: Oct. 1, 2019 Sept. 30, 2020
- Interdisciplinary team
  - Clemson University (Lead)
  - University of Oklahoma (Subcontractor)
  - Quest Drilling Facilities LLC (Subcontractor)


# **Project Objectives**

- Objective: To develop and validate a low-cost all-digital sensing technology for distributed downhole pressure monitoring in Unconventional Oil and Gas (UOG) fields.
- Pressure information is critical to
  - Guide hydraulic fracturing operations
  - Monitor potential leakage occurrence
- Existing sensing technologies are too costly for UOG

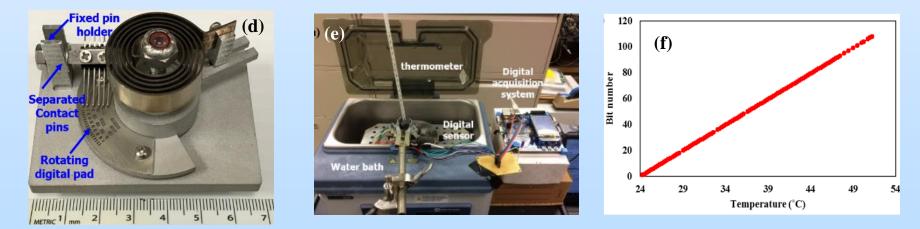

# **Technical Challenges**

- Downhole sensors
  - Harsh environment (high-T, high-P, vibrations, etc.)
  - High pressure resolution (0.2%)
  - Large range (10,000 psi)
  - Restricted dimensions (less than 2-inch in diameter)
  - Long-term stability
- Data transmission
  - Long distance (km)
  - Sensor multiplexing to save cost

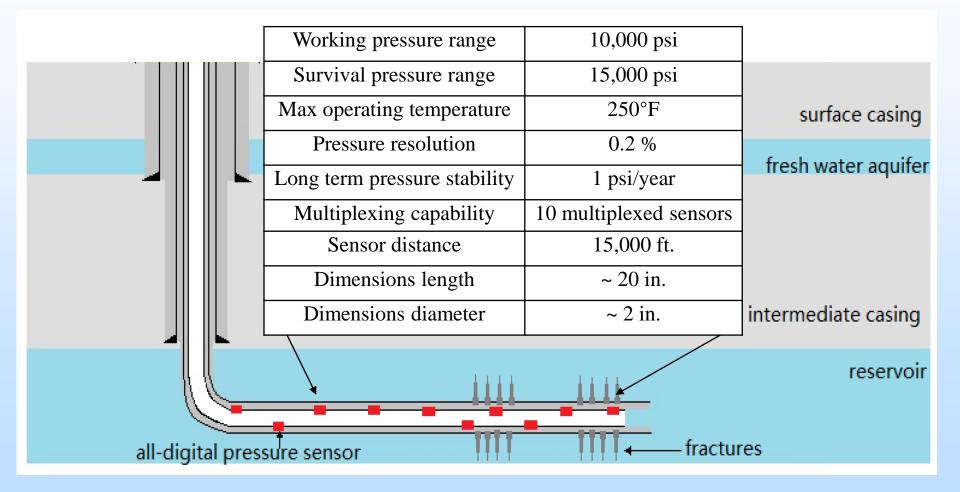
## **Existing Technologies**



# **All-digital Sensor Concept**




## **Proof of Concept**


#### - All-digital pressure sensors using Bourdon tube

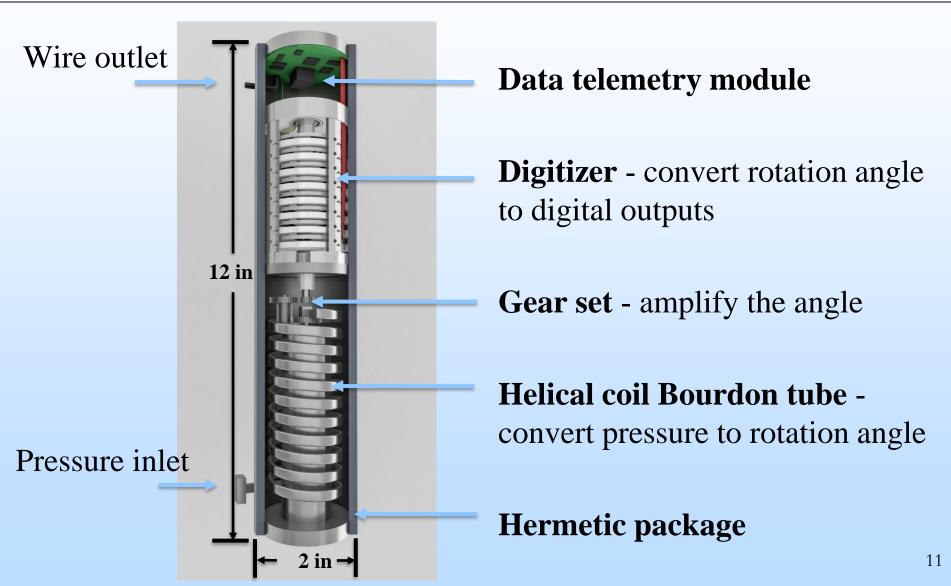


- All-digital temperature sensors using bimetallic coil



## **Sensor Specifications**




## **Technical Approach**

- Sensors: Design, engineer, fabricate, package and test/validate the all-digital pressure sensors.
- **Instrumentation:** Develop and test sensor multiplexing and data transmission methods for distributed pressure sensing.
- **Pilot test:** validate the prototype sensors and instrumentation in research wellbores.
- **Field test:** validate the all-digital pressure monitoring system in a production well.

## **Project Scope**

- **Budget Period 1:** Design, fabricate, package and validate of the all-digital pressure **sensors**.
- **Budget Period 2:** Develop and test sensor multiplexing technology, fabricate and validate the prototype sensors and **instrumentation** through pilot tests.
- **Budget Period 3:** Conduct a **field test** in a production well to demonstrate and confirm the performance of the new pressure monitoring technology.

## **Progress and Current Status of Project**



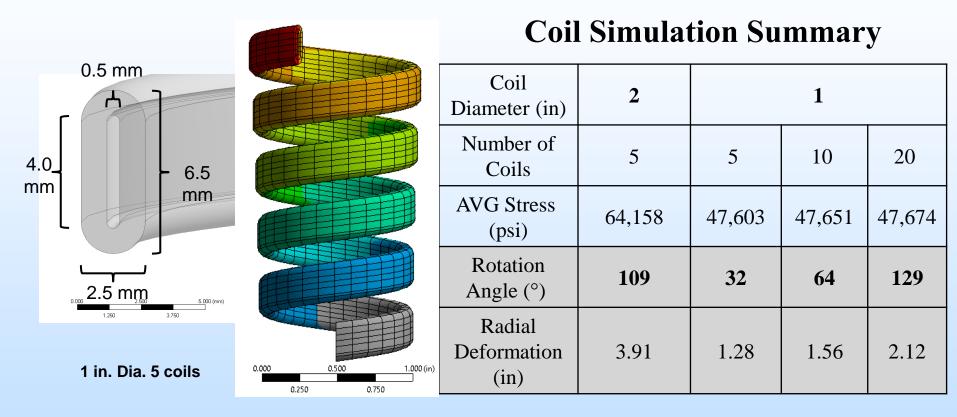
### Pressure Transducer

#### **1. C-type (single coil) Bourdon tube**

- Too large in cross section dimensions
- Low sensitivity
- Good reliability

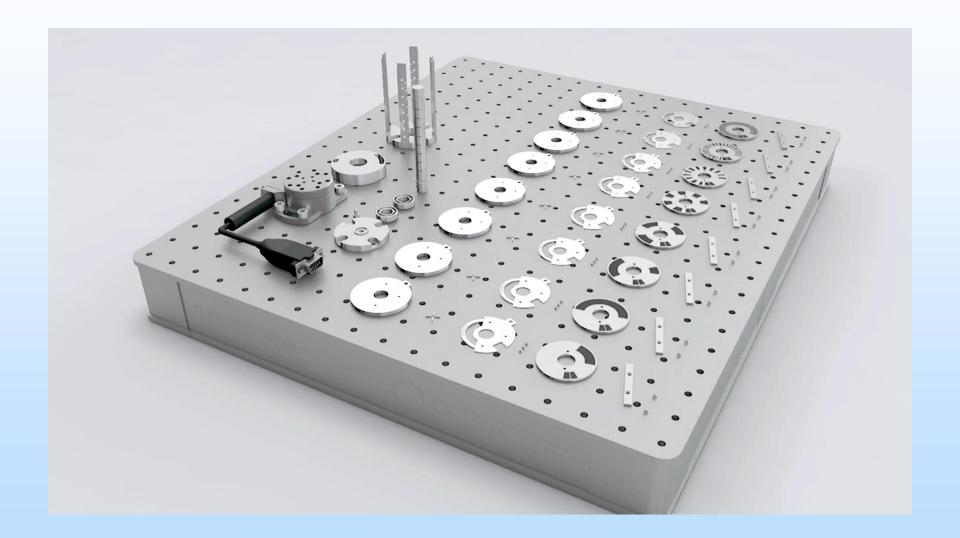
#### 2. Metal bellows tube

- Difficult to fabricate
- Poor reliability



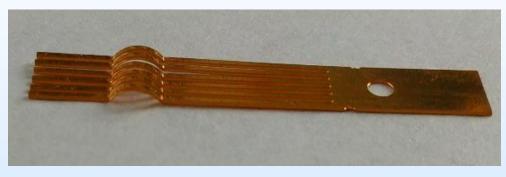

#### **3. Helical coil Bourdon tube**

- High sensitivity
- Easy fabrication
- Good reliability




## **Coil Design by Simulations**



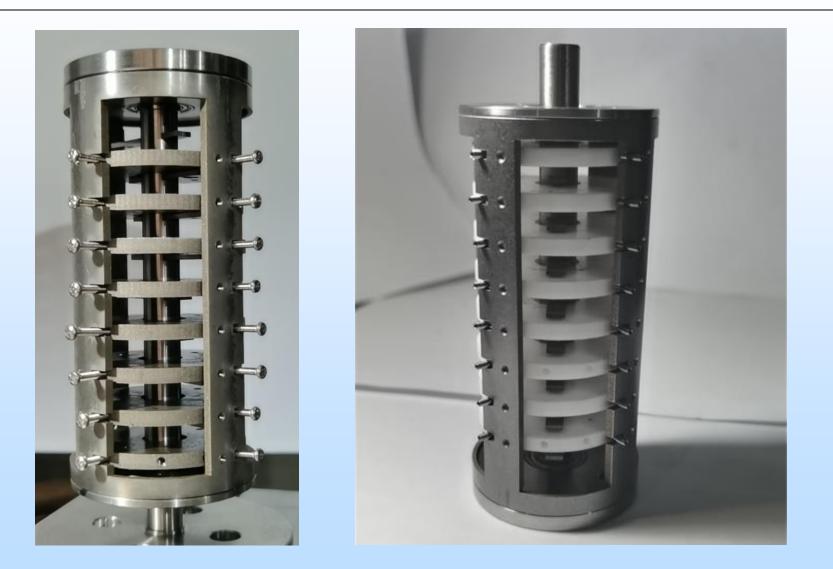

- Rotation angle increases with increasing number of coils
- Radial deformation increases with increasing number of coils
- Radial deformation increases with increasing coil diameter

## All-digital Sensor Design and Assembly




### **Parts Fabrication**

#### **Contact pins**




#### **Digital encoding pads**





## Partially Assembled Decoder



## Hermetic Package Design

• Minimum thickness (Wall: 3/16-inch, Lid: 11/16-inch)

Unit: MPa

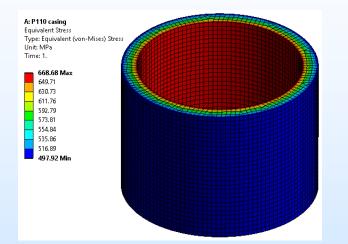
795.92

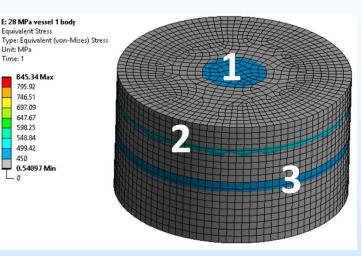
746.51

697.09

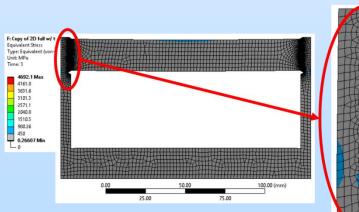
647.67

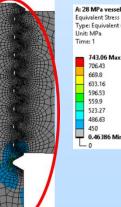
598.25

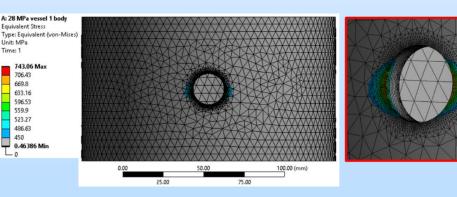

548.84


499.42

450


- 0

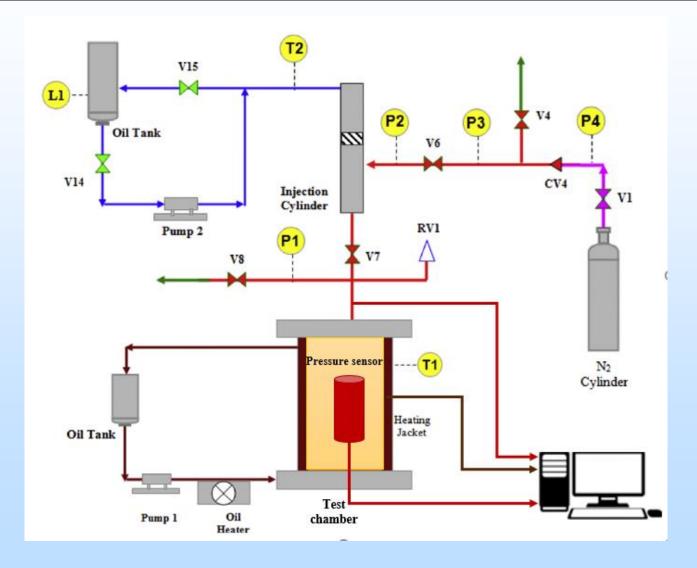

Time: 1






#### Simulations of thread and hole








## Plans

- Sensor prototypes and in-lab test under simulated conditions (250°C, 10,000psi). BP1
- Instrumentation for sensor multiplexing and long-distance data transmission. **BP1 and BP2**
- Preparation of sensors and instrumentation for the field tests. – BP2 and BP3
  - Tested in the research wellbore at the depth of 3,000 ft.
  - Test in a production well

## Sensor P&T Laboratory Test



## Testing in a research wellbore

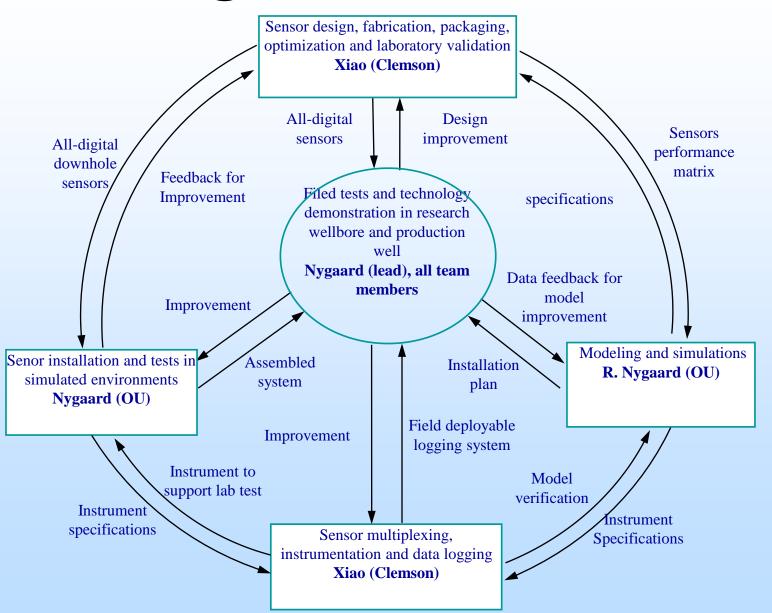


#### Quest Drilling Test Facility, Payne, Oklahoma



## Summary

- Requested a no-cost extension of 6 months for BP1, closedown of labs due to Covid-19.
- Has followed the schedule and completed the key milestones as planned.
- Excellent collaborations the team has been effectively working together.


### Thank You!



# Appendix

These slides will not be discussed during the presentation, but are mandatory.

## **Organization Chart**



## The Team

- Hai Xiao (PI)
  - Professor, Electrical & Computer Engineering, Clemson University
  - Sensors and instrumentation
- Runar Nygaard (Co-PI)
  - Professor, Petroleum Engineering, University of Oklahoma
  - Drilling, simulation, testing and data analysis
- Brian McCutchen (Co-PI)
  - Operation Manager / Owner, Quest Test Facility LLC
  - Drilling and sensor deployment

#### **Gantt Chart**

|                                                                             | BP1 |        |     |     |     |      |       |      | No-Cost Extension |    |      |       |    |       | BP2  |      | BP3    |       |        |       |                               |       |    |       |        |       |        |                |
|-----------------------------------------------------------------------------|-----|--------|-----|-----|-----|------|-------|------|-------------------|----|------|-------|----|-------|------|------|--------|-------|--------|-------|-------------------------------|-------|----|-------|--------|-------|--------|----------------|
| TASK / Milestone                                                            |     | Year 1 |     |     |     |      |       |      |                   |    |      | ear 2 |    |       |      |      |        |       |        |       | Year 3<br>30 31 32 33 34 35 3 |       |    |       | Year 4 |       |        |                |
|                                                                             | 1 2 | 3 4    | 5   | 6 7 | 8 9 | ) 10 | 11 12 | 2 13 | 14 15             | 16 | 17 1 | 18    | 20 | 21 22 | 2 23 | 24 2 | 5 26 2 | 27 28 | 3 29 3 | 30 31 | 32                            | 33 34 | 35 | 36 37 | 38 3   | 39 40 | ) 41 4 | <del>1</del> 2 |
| 1.0 Project Management and Planning                                         | -   |        |     |     |     |      |       |      |                   |    |      |       |    |       |      |      |        |       |        |       |                               |       |    |       |        |       |        |                |
| Completed PMP.                                                              |     |        |     |     |     |      |       |      |                   |    |      |       |    |       |      |      |        |       |        |       |                               |       |    |       |        |       |        | _              |
| 2.0 Workforce Readiness for Technology Development                          |     |        |     |     |     |      |       |      |                   |    |      |       |    |       |      |      |        |       |        |       |                               |       |    |       |        |       |        | 1              |
| Identidy and plan for workforce needed for implementing proposed technology |     |        |     |     |     |      |       |      |                   |    |      |       |    |       |      |      |        |       |        |       |                               |       |    |       |        |       |        |                |
| 3.0 Development of Data Management Plan                                     |     |        |     |     |     |      |       |      |                   |    |      |       |    |       |      |      |        |       |        |       |                               |       |    |       |        |       |        |                |
| Completed Data Management Plan.                                             |     |        |     |     |     |      |       |      |                   |    |      |       |    |       |      |      |        |       |        |       |                               |       |    |       |        |       |        |                |
| 4.0 Development of Technology Maturation Plan                               |     |        | + + |     |     |      |       |      |                   |    |      |       |    |       |      |      |        |       |        |       |                               |       |    |       |        |       |        |                |
| Completed Technology Maturation Plan.                                       |     |        |     |     |     |      |       | - I  |                   |    |      |       |    |       |      |      |        |       |        |       |                               |       |    |       |        |       |        |                |
| 5.0 Establish Technical Advisory Board, Sensor/System Requirements          |     |        |     | •   |     |      |       |      |                   |    |      |       |    |       |      |      |        |       |        |       |                               |       |    |       |        |       |        |                |
| 5.1. Formation of a technical advisory board to manage research progress    |     |        |     |     |     |      |       |      |                   |    |      |       |    |       |      |      |        |       |        |       |                               |       |    |       |        |       |        |                |
| 5.2. Establish the requirements for sensor and system development           |     |        |     |     |     |      |       |      |                   |    |      |       |    |       |      |      |        |       |        |       |                               |       |    |       |        |       |        |                |
| 6.0 Development and Testing of Downhole Pressure Sensors                    |     |        |     |     |     |      |       |      |                   |    |      | •     |    |       |      |      |        |       |        |       |                               |       |    |       |        |       |        |                |
| 6.1. Design all-digital pressure sensors                                    |     | _      |     |     |     |      |       |      |                   |    |      |       |    |       |      |      |        |       |        |       |                               |       |    |       |        |       |        |                |
| 6.2. Design all-digital sensor package                                      |     |        |     |     |     |      |       |      |                   |    |      |       |    |       |      |      |        |       |        |       |                               |       |    |       |        |       |        |                |
| 6.3. Fabricate and test sensors                                             |     |        |     |     |     |      |       |      |                   |    |      |       |    |       |      |      |        |       |        |       |                               |       |    |       |        |       |        |                |
| GO-NO Go Decision 1                                                         |     |        |     |     |     |      |       |      |                   |    |      |       |    |       |      |      |        |       |        |       |                               |       |    |       |        |       |        |                |
| 7.0 Development and Testing of Sensor Multiplexing Technique                |     |        |     |     |     |      |       |      |                   |    |      | -     |    |       |      | →    |        |       |        |       |                               |       |    |       |        |       |        |                |
| 7.1. Develop and test a multiplexing technique                              |     |        |     |     |     |      |       |      |                   |    |      |       |    |       |      |      |        |       |        |       |                               |       |    |       |        |       |        |                |
| 8.0 Fabricate and Test Sensor Prototypes and Sensing System                 |     |        |     |     |     |      |       |      |                   |    |      | _     |    | -     |      |      |        |       |        |       |                               |       |    |       |        |       |        |                |
| 8.1. Fabricate prototype sensors                                            |     |        |     |     |     |      |       |      |                   |    |      |       |    |       |      |      |        |       |        |       |                               |       |    |       |        |       |        |                |
| 8.2. Assemble and test sensors                                              |     |        |     |     |     |      |       |      |                   |    |      |       |    |       |      |      |        |       |        |       |                               |       |    |       |        |       |        |                |
| 9.0 Test Prototypes and Sensing System in Research Wellbore                 |     |        |     |     |     |      |       |      |                   |    |      |       |    | _     |      | _    | +      |       | ┿┿┾    | ►     |                               |       |    |       |        |       |        |                |
| 9.1. Sensor test plan                                                       |     |        |     |     |     |      |       |      |                   |    |      |       |    |       |      |      |        |       |        |       |                               |       |    |       |        |       |        |                |
| 9.2. Report on test site readiness and sensor installation                  |     |        |     |     |     |      |       |      |                   |    |      |       |    |       |      |      |        |       |        |       |                               |       |    |       |        |       |        |                |
| 9.3. Test sensors in Quest research well                                    |     |        |     |     |     |      |       |      |                   |    |      |       |    |       |      |      |        |       |        |       |                               |       |    |       |        |       |        |                |
| 9.4. Presearch well test report                                             |     |        |     |     |     |      |       |      |                   |    |      |       |    |       |      |      |        |       |        |       |                               |       |    |       |        |       |        |                |
| GO-NO Go Decision 2                                                         |     |        |     |     |     |      |       |      |                   |    |      |       |    |       |      |      |        |       |        |       |                               |       |    |       |        |       |        |                |
| 10.0 Field Test of Technology in a Producing Well                           |     |        |     |     |     |      |       |      |                   |    |      |       |    |       |      |      |        |       | [      | _     |                               | _     |    | _     | +      | +-    | ┿┯┿    | ≯              |
| 10.1. Field test plan proved by TAB                                         |     |        |     |     |     |      |       |      |                   |    |      |       |    |       |      |      |        |       |        |       |                               |       |    |       |        |       |        |                |
| 10.2. Field test results and test report                                    |     |        |     |     |     |      |       |      |                   |    |      |       |    |       |      |      |        |       |        |       |                               |       |    |       |        |       |        |                |
| 10.3. Product installation on production well                               |     |        |     |     |     |      |       |      |                   |    |      |       |    |       |      |      |        |       |        |       |                               |       |    |       |        |       |        |                |
| 10.4. Field testing                                                         |     |        |     |     |     |      |       |      |                   |    |      |       |    |       |      |      |        |       |        |       |                               |       |    |       |        |       |        |                |
| 10.2. Analysis and report                                                   |     |        |     |     |     |      |       |      |                   |    |      |       |    |       |      |      |        |       |        |       |                               |       |    |       |        |       |        |                |
| 11.0 Technology Transfer and Commercialization Plan                         |     |        |     |     |     |      |       |      |                   |    |      |       |    |       |      |      |        |       |        |       |                               |       |    |       |        |       | T      |                |
| 11.1. Finalize technology transfer plam                                     |     |        |     |     |     |      |       |      |                   |    |      |       |    |       |      |      |        |       |        |       |                               |       |    |       |        |       |        |                |
| Final project report                                                        |     |        |     |     |     |      |       |      |                   |    |      |       |    |       |      |      |        |       |        |       |                               |       |    |       |        |       |        |                |