DE-FE0031786 Oil & Gas Project Review Meeting Hydraulic Fracturing Technologies University Lead: Virginia Tech Industrial Partner: Sentek Instrument LLC October 14, 2020

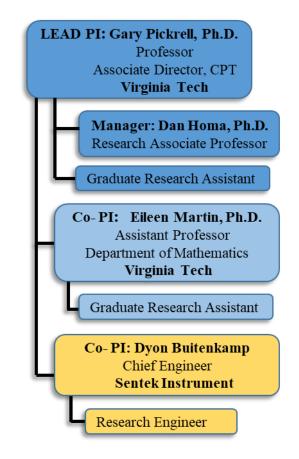
FULLY DISTRIBUTED ACOUSTIC AND MAGNETIC FIELD MONITORING VIA A SINGLE FIBER LINE FOR OPTIMIZED PRODUCTION OF UNCONVENTIONAL RESOURCE PLAYS

DE-FE0031786

Gary Pickrell, Daniel Homa Virginia Tech Center for Photonics Technology Blacksburg, VA 24061 pickrell@vt.edu, dan24@vt.edu Eileen Martin

Virginia Tech

Department of Mathematics


Blacksburg, VA 24061 eileenrmartin@vt.edu Dyon Buitenkamp Sentek Instrument LLC Blacksburg, VA 24061 dbuitenkamp@sentekinstrument.com

Project Team

- Lead PI : Dr. Gary Pickrell
 - Provide executive management for all phases of the project, and oversee the design, fabrication, and characterization of the sensing fibers
- Co-PI : Dr. Eileen Martin
 - Support all phases of the project and provide technical expertise as in pertains to sensor response, data analysis, optimization of the sensing fiber design and applicability for subsurface imaging applications.
- Co-PI: Dyon Buitenkamp
 - Provide technical and project management for the sensor interrogation system development, as well as support optimization of the sensing fiber
- Technical Manager: Dr. Daniel Homa
 - Daily project management, to include technical insights, under the guidance of the PI and Co-PI(s)

nvent the Futur

<u>Overview</u>

- General Information
 - Goals/Objectives
 - Anticipated Outcomes/Impact
 - Research Approach
- Project Management Plan
 - Tasks, Milestones, Success Criteria
- Project Update
 - Development and Dissemination
 - Execution of Tasks (5-8)
- Progress and Near-Term Plan

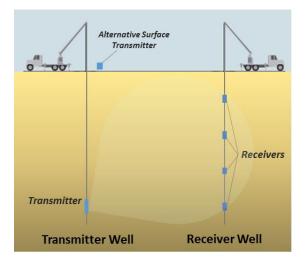


Image from Halliburton website

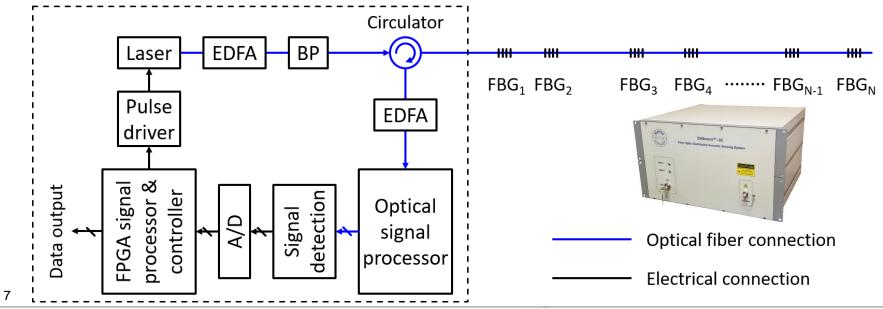
GENERAL INFORMATION

Goals/Objectives

- <u>Objective</u>: Develop a fiber-optic sensing system capable of realtime simultaneous and distributed measurements of multiple subsurface parameters via a first-of-its-kind optical fiber with an electromagnetic field sensing capability over an unprecedented sensing length
- **Goal:** Design and fabricate a multi-material sensing fiber for distributed magnetic field and acoustic measurements
- <u>Goal</u>: Design and construct an optical interrogation system and develop the sensing algorithms for distributed magnetic field and acoustic measurements with ultra-high sensitivity via a single sensing fiber
- **Goal:** Demonstrate the performance of a fully integrated multiparameter sensing system in a simulated laboratory environment

Anticipated Outcomes/Impact

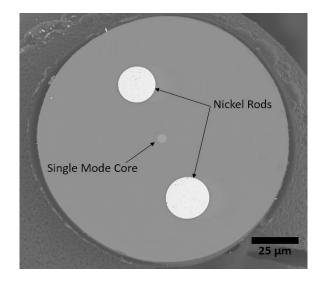
- High resolution sensing and imaging of the subsurface will provide operators with more clarity of the subsurface and provide real-time information for optimized drilling and production
 - Cross-Well Imaging Techniques
 - Passive/Active Magnetic Ranging
 - Position Monitoring for Downhole Completion Devices
 - Monitoring while Drilling (MWD)/Logging while Drilling (LWD)
 - Permanent Well Monitoring
- Reliability and performance capabilities of the fiber optic sensing system will assure that the operators have the most reliable and accurate information necessary to make critical decisions



Research Approach

DASNOVA[™] FIBER OPTIC SENSING TECHNOLOGY

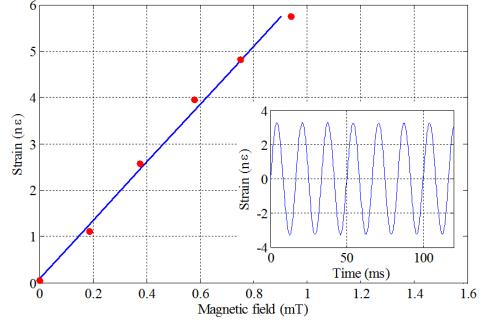
- Relies on an elegant marriage between a special type of FBG device and a time-division-multiplexing (TDM) signal processing scheme
- Superior performance
 - 100 times more sensitive than traditional DAS systems
 - Uniform sensitivity distribution across entire sensing range
 - Capable of multi-parameter measurements.



Research Approach

MULTI-MATERIAL MAGNETIC SENSING FIBER

- Single mode optical fiber core with a magnetostrictive material in the cladding
 - The magnetostrictive material expands or contracts upon exposure to a magnetic field, inducing a strain on the FBG based interferometers in the optical fiber
- Stack-and-draw technique utilized to incorporate dissimilar materials in the fiber via optical fiber draw
- Magnetostrictive materials
 - Galfenol, Metglas 2605[®], Nickel
- All other sensing schemes require bonding of the magnetostrictive material to the fiber, including it in the coating, and/or utilizing other post-processing schemes),



Research Approach

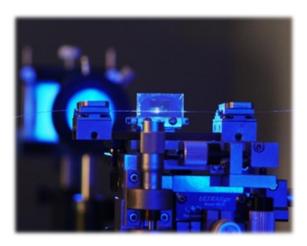
PRELIMINARY DEMONSTRATION OF MAGNETIC FIELD SENSOR

- Response of a prototype sensing fiber to a magnetic field generated by the alternating current of an air solenoid
 - Small wire diameter (~20 µm)
 - Poor mechanical coupling
 - Limited magnetostriction (30 ppm)
- Significant performance
 improvement anticipated
 - Improved mechanical coupling via fiber twist during draw
 - Use of materials that exhibit larger magnetostriction
 - Increase the surface area of the magnetostrictive material in the sensing fiber
 - Utilize composite magnetostrictive structures

PROJECT MANAGEMENT PLAN

Project Tasks

- Year 1
- Task 1.0 Project Management and Planning (VT)
- Task 2.0 Workforce Readiness Plan (VT)
- Task 3.0 Data Management Plan (VT)
- Task 4.0 Technology Maturation Plan (VT)
- Task 5.0 Theoretical Modeling and Analyses (VT)
 - Evaluate design parameters for the sensing fiber
 - Evaluate design parameters for the interrogation system
 - Determine anticipated strain, acoustic, and magnetic field response
- Task 6.0 Design and Construction of the Simulated Subsurface Test Facilities (VT)
 - Theoretical modeling and computational data analysis of shale oil and gas reserves will guide the design of the facilities
 - Testing will provide an accurate assessment of the performance



Project Tasks

YEAR 2

- Task 7.0 Multi-Parameter Sensing Fiber Fabrication (VT)
 - Preform and fiber fabrication
 - Fiber Bragg grating array fabrication
- Task 8.0 Demonstration of Distributed Sensing System
 - Interrogation Design and Implementation
 - Distributed Sensing System Construction
 - Demonstration with Commercial Fibers
- Task 9.0 Fabrication and Characterization of Prototype High Temperature DAS Fiber
 - Short length (<10 meter) prototype high temperature (~300°C) DAS sensing fibe^r

Project Tasks YEAR 3

- Task 10.0 Integration of Distributed Multi-Parameter Sensing Fiber and System
 - Fabrication of Distributed Magnetic Sensing Fiber
 - Demonstrate Distributed Multi-Parameter Sensing with Magnetic Sensing Fiber
 - Perform Sensor Calibration and Verification
- Task 11.0 Prototype Sensing System Testing
 - Fabrication of Prototype Distributed Magnetic Sensing Fiber
 - Construct Multi-Parameter Sensing System with Magnetic Sensing Fiber
 - Test Sensing System and Evaluate Performance
- Task 12.0 Prepare and Submit Final Report
 - Develop and propose a field trial test plan for the deployment of the prototype sensing system

Project Milestones

- "Year 1" Activities
 - Project Management Plan
 - Theoretical Modeling and Analyses
 - Commissioned Test Facilities

- "Year 2" Activities
 - Distributed Magnetic Sensing Fiber
 - Prototype Acoustic Sensing System

Task/ Subtask	Milestone Title & Description	Planned Completion Date	Completion Date (% Completion)
1.0	Project Management Plan	8/1/19	10/15/19
5.0	Theoretical Modeling and Analyses	9/30/20	9/30/20
6.0	Commissioned Test Facilities	9/30/20	9/30/20
7.0	Distributed Magnetic Sensing Fiber	9/30/21	35%
8.2	Prototype Acoustic Sensing System	9/30/21	40%
9.0	High Temperature Sensing Fiber	9/30/21	
11.0	Multi-Parameter Performance Test	6/30/23	
12.0	Final Report	9/30/23	

Project is ON SCHEDULE and ON BUDGET

Milestone Success Criteria

- "Year 1" Activities
 - Theoretical Evaluation
 - Demonstrate technical feasibility
 - Test Facilities
 - Design and construct the necessary facilities for performance testing

- "Year 2" Activities
 - Distributed Magnetic Sensing Fiber
 - Demonstrate experimental feasibility
 - Prototype DAS System
 - Demonstrate performance capabilities

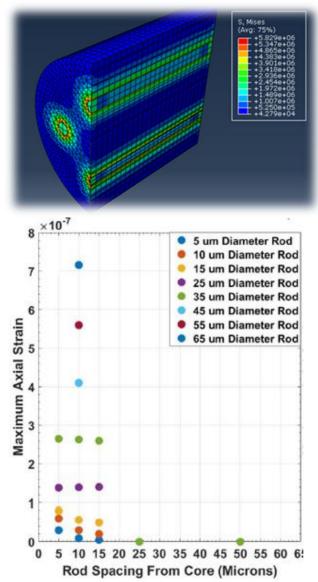
ID	Title	Description	Decision Point	Date
SC1	Theoretical Evaluation	1. Minimum Sensitivity: 10 millitesla (mT)	D1	9/30/20
SC2	Test Facilities	 Maximum Exposure Temperature: ≥ 150°C Minimum Magnetic Field Exposure: 1mT 	D1	9/30/20
SC3	Fabrication of Distributed Magnetic Sensing Fiber	 Minimum Fiber Length: 50 m Minimum Tensile Strength of 50 kpsi 	D2	9/30/21
SC4	Distributed Acoustic and Strain Sensing System	 Minimum Spatial Resolution: 2m Minimum Strain Sensitivity: 0.5 nanostrain 	D2	9/30/21
SC5	Distributed Magnetic Sensing System	 Sensing Length: > 1 km Minimum Spatial Resolution: 5m Minimum Magnetic Field Sensitivity: 2 mT 		9/30/22

PROJECT UPDATE

Development and Dissemination

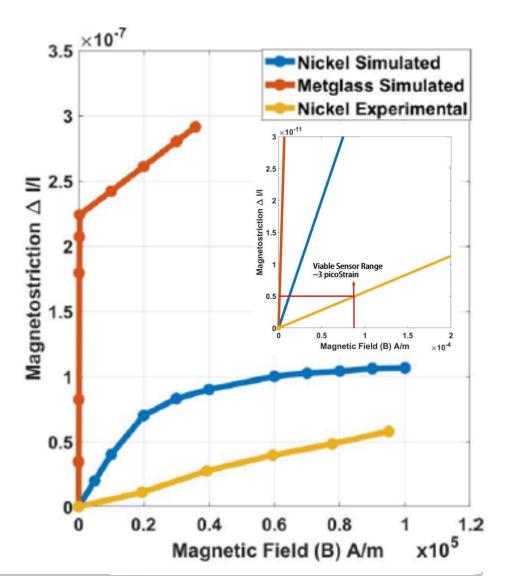
- Proactive adjustments and progress made during pandemic
 - University closed from April 3, 2020 to June 9, 2020
 - Bi-weekly meetings continued via Zoom
 - Efforts focused on theoretical modeling, design and construction of test facilities, sensing fiber fabrication development, and design and construction of sensor interrogation systems (Tasks 5-8)
- Graduate student development
 - MSE Ph.D. candidate (Pickrell)
 - Mathematics M.S. candidate (Martin)
- Publications (2) plan to submit
 - "Footstep Detection in Urban Seismic Data with a Convolutional Neural Network" (Martin)
 - "Magnetic Field Sensing via Multi-Material Optical Fibers" (Pickrell)

Task 5.0 – Theoretical Modeling


- Developed theoretical models and techniques necessary to optimize magnetic sensing fiber performance
 - Finite Element Analysis (FEA)
 - COMSOL V4.2a

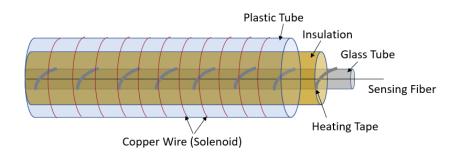
Evaluate response to magnetic field

- Geometry (size, number and position of magnetostrictive rods)
- Magnetostrictive material (Ni, Galfenol, FeBSi)


Comprehensive model for sensing fiber

- Incorporate optical, acoustic, and magnetic response
- Validate and refine model per experimental results
- All work performed by MSE Graduate Student (Zach Hileman)

Theoretical Modeling

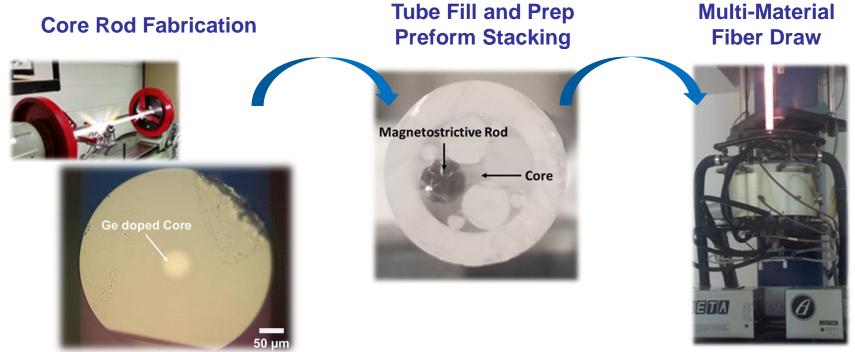

- "Basic" sensing fiber with one magnetostrictive rod
 - Single mode GeO₂-SiO₂ core
 - One magnetostrictive rod
- Study parameters that directly affecting optical sensing outputs
- Selected magnetostrictive materials
 - Nickel, Galfenol, FeBSi
- Met Success Criteria for Milestone 6
 - Minimum Sensitivity: 10 mT

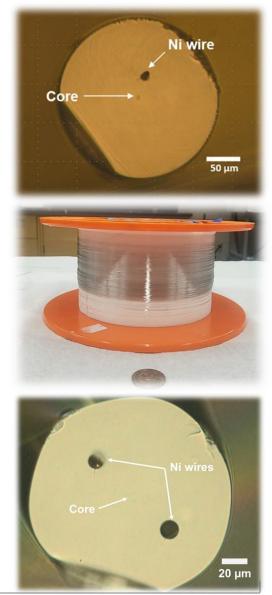
Task 6.0 – Testing Facilities

- Constructed test stands (2) to evaluate magnetic response of sensing fiber
 - Air-core solenoid
 - Length = 2 meters, 5 meters
- Design and construction of soil test bed(s) for simulated environmental testing
 - Uniform earth material
 - Controlled magnetic and acoustic sources
 - Bare sensing fiber/Cemented in metal tubing
- High temperature testing (>150°C)
 - Air Core Solenoid(s)
 - Soil Test Bed(s)

Testing Facilities

- Completed construction of Test Bed #1
 - Vibration isolation of soil test bed on optical table with air mounts/rigid kinematic supports
 - Dimensions: 2m (I) x 0.9m (w) x 0.6m (h)
- Completed construction of Test Bed #2
 - Dimensions: 5m (I) x 0.6m (w) x 0.6m (h)
- Magnetic/Acoustic/Thermal Response
 - Air Core Solenoid / Low Field Point Sensor
 - Tactile Transducer/ Accelerometer
 - Heating Cartridges/ Thermocouples
- Status update for Milestone 7
 - Met Success Criteria #2
 - Minimum Magnetic Field Exposure: 1mT
 - Met Success Criteria #1
 - Maximum Exposure Temperature: ≥ 150°C



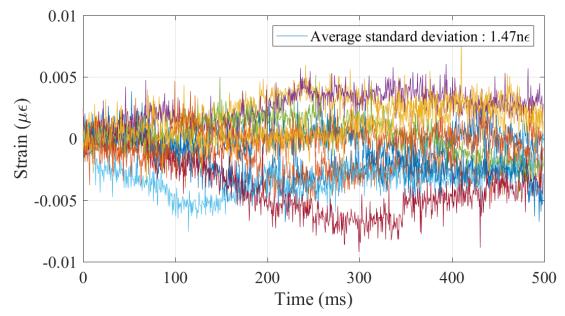

Task 7.0 – Fiber Fabrication

- Developed multi-material preform and fiber fabrication process
- Novel and extremely cost-effective single mode core rod fabrication
 - Precision overcladding of large core (360 µm) Ge-doped step-index fiber
 - Improved research efficiencies and path to process up-scaling
- Completed evaluation of precursors for magnetostrictive materials
 - Powder fill / Wire fill / Cane draw

Task 7.0 – Fiber Fabrication

- Successfully demonstrated stack and draw technique for the fabrication of sensing fibers
 - Vacuum-assisted draw
- Demonstrated ability to produce multi-material sensing fiber via VT draw tower
 - Magnetostrictive materials: Galfenol, Ni, FeBSi
 - Multiple number of magnetostrictive rods: 1-3
 - Relatively long and continuous lengths (>500 m)
 - High strength (>100 kpsi) via bend test (d<10 mm)
- Status update for Milestone 9
 - On Schedule to meet Success Criteria #1
 - Minimum Fiber Length: 50 m
 - On Schedule to meet Success Criteria #2
 - Minimum Tensile Strength of 50 kpsi

Task 8.0 – Sensing System


- Manufactured a DASNova[™] interrogator
 - Spatial resolution of 5 meters
 - Available for the testing of sensing fiber samples (VT)
- DASNova[™] with 2 m spatial resolution under construction
 - All the components have been purchased and received.
 - Critical components that require special assembling and adjustment have been manufactured and have been fully tested
- Status update for Milestone 9
 - On Schedule to meet Success Criteria #1
 - Minimum Spatial Resolution: 2m
 - On schedule to meet Success Criteria #2
 - Minimum Strain Sensitivity: 0.5 nanostrain

Sensing System

- Successful demonstration of "FBG-less" DAS system
 - Does not require inscription of FBGs in multi-material sensing fiber
 - Very significant technological development
 - Improve efficiencies specific to sensing fiber development

Test facilities to evaluate response of DAS system

Progress Review and Near-Term Plan

- Theoretical Modeling (Task 6)
 - Successfully demonstrated magnetic sensing capabilities
 - Incorporate additional functions (acoustic & optical response)
 - Verify and refine models based on experimental results
- Test Facilities (Task 7)
 - Successfully constructed sensing fiber test stands(2) and soil test beds(2)
 - Magnetic, acoustic, and temperature response
 - Spectral attenuation, time domain reflectometry, and SM cutoff
 - Add additionally functionality and control, as necessary
- Sensing Fiber Fabrication (Task 8)
 - Optimize design and processing parameters
 - Fabricate and characterize magnetic sensing fiber samples
- Sensing System (Task 9)
 - Optimization of "FBG-less" sensing system
 - Manufacture DASNova[™] with 2m spatial resolution

Acknowledgements

Department of Energy

National Energy Technology Laboratory Project Manager: Gary L. Covatch Project Manager: Skip Pratt

Halliburton

Industrial Support: Dorothy Wang, Ph.D.

Prysmian Group

Industrial Support: Brian Risch, Ph.D.

Linking the Future **Weatherford**

Industrial Support: Zhuang Wang, Ph.D.

THANK YOU FOR YOUR TIME

Questions?

