EERC. UNIVERSITYOF. NORTH DAKOTA.

EERC. UND UNIVERSITY OF NORTH DAKOTA.

Energy & Environmental Research Center (EERC)

CO2 ENHANCED OIL RECOVERY IMPROVEMENT IN CONVENTIONAL FIELDS USING RICH GAS DE-FE0031789

U.S. Department of Energy National Energy Technology Laboratory Oil and Gas Virtual Project Review Meeting October 13, 2020

Steven Smith Principal Geologist, Integrated Analytical Solutions John Hamling Assistant Director, Integrated Projects

CO₂ BLENDED WITH RICH GAS

Research Hypothesis: The injection of a blend of rich hydrocarbon gas and CO_2 into an oil reservoir will reduce molecular weight selectivity, lower minimum miscibility pressure and viscosity of the oil, and improve gas solubility, resulting in an overall improvement in EOR performance.

PROJECT GOAL AND OBJECTIVES

Project Goal: Determine the effect of injecting blended CO_2 and rich gas into an active CO_2 EOR field to improve production performance.

Project Objectives: The goal will be accomplished by completing several specific research objectives:

- Determine the quantity, transportation, compression, and injection needs for a field-based injection test.
- Inject blended CO₂ and rich gas in the Bell Creek Field for incremental recovery and associated CO₂ storage.
- Develop field-based data to determine the effects of rich gas additives in CO₂ on oil production.
- Use laboratory experiments to determine the potential for varying compositions of rich gas blended with CO₂ to improve oil recovery in other conventional reservoirs currently undergoing CO₂ EOR.
- Develop business case scenarios to assess the potential for using rich gas added to CO₂ at other EOR locations in the United States.

FUNDING AND PROJECT PERFORMANCE DATES

	BP1	(\$)	BP2	2 (\$)							
	10/1/2019-	-3/31/2021	4/1/2021-	9/30/2024	Total						
	Federal	Nonfederal	Federal	Nonfederal	Federal	Nonfederal					
DOE	\$2,184,364 –		\$5,789,517	—	\$7,973,881	_					
Schlumberger	—	\$334,400	_	\$501,600	_	\$836,000					
CMG	—	\$212,993	—	\$951,007	_	\$1,164,000					
Total	\$2,184,364	\$547,393	\$5,789,517	\$1,452,607	\$7,973,881	\$2,000,000					
Total Cost Share %	80% 20%		80%	20%	80%	20%					

Note: **Denbury** – Additional collaboration in the form of field support, infrastructure development, design and implementation, gas supply, and injection/production operations. **Oneok** – Committed to working with Denbury and EERC to source rich gas for EOR test.

TECHNOLOGY BACKGROUND: CO₂ BLENDED WITH RICH GAS

- Previous laboratory and modeling work showed ethane can solvate a wider MW range of hydrocarbons than CO₂ alone, which could lead to more oil from the reservoir with better efficiency.
- Blending rich gas components with CO₂ may provide means of improving oil recovery in fields either undergoing or planned for tertiary recovery.
- Use of rich gas or rich gas–CO₂ blends for flooding operations can greatly reduce the quantity of CO₂ needed for EOR injection.

TECHNICAL APPROACH/PROJECT SCOPE

- Task 1.0 Project Management and Planning
- Task 2.0 Engineering Design
 - 2.1 Rich Gas Source, Compression, and Transportation Evaluation
 - DP: Go/no-go decision based on whether rich gas source is secured 12/31/2020
 - 2.2 Core and Fluid Laboratory Evaluations
 - 2.3 Blended CO₂-Rich Gas Injection Modeling and Simulation
 - 2.4 Injection/Monitoring Program Design

TECHNICAL APPROACH/PROJECT SCOPE (CONT.)

- Task 3.0 Field Operations and Monitoring (BP2)
 - 3.1 Field Preparation
 - 3.2 Field Validation and Monitoring
 - 3.3 Rich Gas Supply Monitoring
 - 3.4 Sample Analysis
 - 3.5 Field Validation Decommissioning Activities
- Task 4.0 Business Case for Blended CO₂-Rich Gas Utilization
 - 4.1 Laboratory Studies
 - 4.2 Data Management and Machine Learning Studies
 - 4.3 Modeling and Simulation
 - 4.4 Business Case Analysis

EERC. NORTH DAKOTA.

PROJECT SCHEDULE WITH KEY MILESTONES

PROGRESS AND CURRENT STATUS OF PROJECT

Engineering Design

- EERC and Denbury are working toward a gas delivery plan and contract with a gas supplier.
- Core and fluid laboratory evaluations of Bell Creek samples are progressing.
- The injection pattern and site were selected.

 The geologic model for the pilot pattern has been updated, and EOS modeling based on the injection gas composition is complete.

PROGRESS AND CURRENT STATUS OF PROJECT

- Business case development has been initiated.
 - Rock samples were collected for the Rocky Mountain region.
 - Porosity, permeability, thin sections, and MICP are all complete for this set.
 - Additional samples for the Gulf Coast region are being identified and acquired.
 - Data collection for both regions has been initiated.

NORTH DAKOTA.

PROGRESS AND CURRENT STATUS OF PROJECT

Characteristics of CO₂ EOR Fields in Proposed Project

Field	Basin	Zone	Dominant Lithology	Porosity Range, %	Permeability Range, mD	Thickness, ft	API Gravity
Bell Creek	Powder River	Muddy	Marine sandstone	25–35	150–1175	30–45	32–41
Cedar Hills	Williston	Red River	Dolostone	13–23	15	10	30
Tinsley	Mississippi Interior Salt	Woodruff	Shallow marine sandstone	26–28	1040–1300	80–90	32
Heidelberg	Mississippi Salt	Eutaw	Marine sandstone	28	10–3115	550	23

PLANS FOR FUTURE TESTING/DEVELOPMENT/COMMERCIALIZATION

- The pilot test during BP2 will provide a unique U.S. data set on rich gas EOR, paving the way for larger-scale tests and deployment.
- Positive pilot test results would support the development of infrastructure and a market for stranded rich gas.
- Results would be applicable to develop business cases for other potential target fields.
- Because of the ability to leverage existing oilfield infrastructure, commercial implementation of rich gas EOR could occur quickly.

SUMMARY

- Project was successfully initiated in winter 2019.
- Project partners are engaged and involved in discussions pertaining to gas supply and composition.
- Task 2 activity is progressing with core flooding studies conducted for the Bell Creek site. Preliminary posttest fluid analysis supports MW selectivity.
- Task 2 modeling and simulation are ongoing and being updated with new laboratory results.
- Business case development has been initiated through data collection and laboratory analyses.

EERC. UN NORTH DAKOTA.

Steven Smith Principal Geologist, Integrated Analytical Solutions ssmith@undeerc.org 701.777.5108 Energy & Environmental Research Center University of North Dakota 15 North 23rd Street, Stop 9018 Grand Forks, ND 58202-9018

www.undeerc.org 701.777.5000 (phone) 701.777.5181 (fax)

CO2 ENHANCED OIL RECOVERY IMPROVEMENT IN CONVENTIONAL FIELDS USING RICH GAS DE-FE0031789

APPENDIX

ORGANIZATIONAL CHART

CO₂ BLENDED WITH RICH GAS TIMELINE

	Budget Period 1									_	_	_	Budget Period 2													_							
	Project Year 1 Proj						Project Year 2 Project Year 3								Project Year 4																		
	2019			202	20					2021							202	2	5					2023	3					2024			
	O N E	<u>) J F</u>	MA	M J	JA	<u> </u>	D J	F M	A M	JJ	A S	<u>s o</u>	N D	JI	FM	A M	J .	JA	S C	NI)]	F M	A M	[J J	Γ A	S O	N D	JF	MA	<u>. M</u>	J J	A S	
Task 1 – Project Management, Planning, and	▼ D1	D 2	ĻŅ				V D	3	-				,						,			-	1 1						Ļ	ļ		D5 \	
Reporting		◆ M1																															
Task 2 – Engineering Design		ĻĻ	ļ																														
2.1 – Rich Gas Source, Compression, and Transportation Evaluation		<u> </u>					♦ M	[3 P																									
2.2 – Core and Fluid Laboratory Evaluations								1																									
 2.3 – Blended CO₂–Rich Gas Injection Modeling and Simulations 2.4 – Injection/Monitoring Program Design 			12																														
Task 3 – Field Injection and Monitoring 3.1 – Field Preparation								•			M4																						
3.2 - Field Validation and Monitoring										-			1		1 1	1			1			1		1 1		♦ M	8						
3.3 - Rich Gas Supply Monitoring													1			1		1 1	8			-		1 1	2 1								
3.4 – Sample Analysis									,,		<i>,</i> ,			, ,	., ,			. ,	,	. ,			. ,	, ,	<u> </u>				<u> </u>	Ҏ мุร			
3.5 - Field Validation Decommissioning Activities																												1 1					
Task 4 – Business Case for Blended CO ₂ –Rich Gas Utilization						-							-																		D4		
4.1 – Laboratory Studies		Ļ			1 1						2 5		• M5		, ,													1 5					
4.2 – Data Management and Machine Learning Studies																																	
4.3 – Modeling and Simulation 4.4 – Business Case Analyses																0			2	M 7		1									M10		
Key for Deliveral	bles (D)	7			ŀ					Key fo	or Mile	estone	es (M)	\blacklozenge																			
 D1 – Updated Project Management Plan D2 – Data Management Plan D3 – Workforce Readiness Plan D4 – Laboratory Studies of Blended CO₂–Rich Gas 					N N N	11 – Kick 12 – Injec 13 – Rich 14 – Field	coff Meet ction Site 1 Gas Sou 1 Prepara	ting Hel Verifie arce Sec ation Con	d d sured mpleted			M7 M8 Com M9	– First – Bleno npleted – Valid	Field I ded Co lation '	Busine: O ₂ –Ric Test Fl	ss Case ch Gas luid Sar	e Devo 5 Inject mple A	eloped tion Analyse	Su A D s M	ummary ctivity E eliverab ilestone	Task Bar ole (D) (M)		▼ ◆				De Cr	ecision F titical Pa	oint (Dl	P) [● ->		
EOR D5 – Data Submitted to NETL EDX					N N	15 – All C 16 – Initia	Core Sam al Geostat	iples Ob tic Mod	otained els Comj	pleted		Con M10	npleted) – Moo	leling	and Si	mulatio	n Con	pleted															

EERC. UNIVERSITYOF. NORTH DAKOTA.